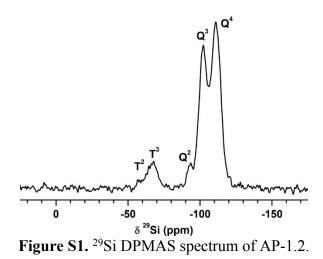
Electronic Supplemental Information (ESI)

Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles (2): a study by ¹H triple-quantum fast-MAS solid-state NMR


Takeshi Kobayashi,[†] Dilini Singappuli-Arachchige,^{†,‡} Igor I. Slowing,^{†,‡} Marek Pruski^{†,‡,*}

[†]U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States

[‡]Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States

S1. ²⁹Si DPMAS NMR

The ²⁹Si direct polarization magic-angle spinning (DPMAS) experiment was performed on an Agilent NMR spectrometer, equipped with a 5-mm double-resonance magic-angle spinning (MAS) probe and operated at 9.4 T. The AP-1.2 was packed in the MAS zirconia rotor and spun at 8 kHz. The spectrum was taken with the RF magnetic field $v_{RF}(^{29}Si) = 50$ kHz for a $\pi/2$ pulse, $v_{RF}(^{1}H) = 50$ kHz for a SPINAL-64 ¹H decoupling during the acquisition, recycle delay $\tau_{RD} = 300$ s, and the number of scans NS = 296. The ²⁹Si chemical shift was referenced with respect to tetramethylsilane (TMS) at 0 ppm. Based on the integration of silicon sites, we estimated that 8.7 % of Si atoms in this sample were bound to carbon, corresponding to an aminopropyl concentration of 1.2 mmol/g.

S2. DNP-enhanced ¹³C{¹H} CPMAS NMR

The DNP-enhanced ¹³C{¹H} cross-polarization (CP)MAS experiment was carried out on a Bruker Biospin DNP NMR spectrometer, operated at 9.4 T, equipped with a gyrotron generating microwaves at 264 GHz. Samples were impregnated with 10 mM AMUPol [1] dissolved in water, packed in 3.2-mm sapphire rotors and spun at a 10 kHz at a temperature of ~110 K. The spectra were taken with the RF magnetic field $v_{RF}(^{13}C) \sim 70$ kHz during cross-polarization, $v_{RF}(^{1}H) = 100$ kHz during short pulse and SPINAL-64 decoupling, $v_{RF}(^{1}H) = 80$ kHz during CP, contact time τ_{CP} = 2 ms, recycle delay $\tau_{RD} = 3$ s, and the number of scans NS = 256. The ¹³C chemical shifts were referenced with respect to tetramethylsilane (TMS) at 0 ppm.

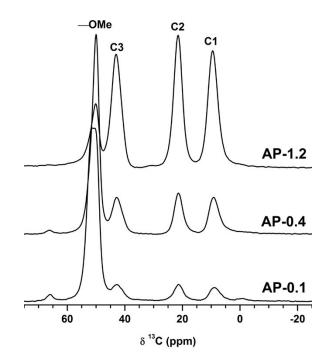
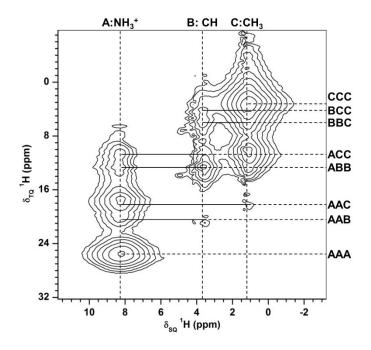



Figure S2. DNP-enhanced ${}^{13}C{}^{1}H$ CPMAS spectra of AP-MSNs samples.

S3. 2D ¹H TQ/SQ correlation spectrum of L-alanine HCl.

The pulse sequence for the TQ/SQ correlation experiment was tested on L-alanine HCl and verified by comparing the spectrum with that shown in an earlier paper by Spiess et al.[2]

Figure S3. 2D ¹H TQ/SQ correlation spectrum of L-alanine HCl. The spectrum was obtained using $v_R = 36 \text{ kHz}$, $v_{RF}(^1\text{H}) = 100 \text{ kHz}$, $\tau_{exc/rec} = 4\tau_R (111.1 \text{ }\mu\text{s})$, $\tau_{z-fil} = 0.5 \text{ }m\text{s}$, $\tau_{RD} = 1.0 \text{ }s$, 160 rows with $\Delta t_1 = 27.778 \text{ }\mu\text{s}$, NS = 24, AT = 2.1 h.

References

- [1] Sauvée, C.; Rosay, M.; Casano, G.; Aussenac, F.; Weber, R.T.; Ouari, O.; Tordo, P. "Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency" *Angew. Chem. Int. Ed.* **2013**, *52*, 10858–10861.
- [2] Schnell. I.; Lupulescu, A.; Hafner, S.; Demco, D.E.; Spiess, H.W. "Resolution enhancement in multiple-quantum MAS NMR spectroscopy", J. Magn. Reson. 1998, 133, 61-69.