Photoprotection or Photodamage: a Direct Observation of

Nonradiative Dynamics from 2-Ethylhexyl 4-

Dimethylaminobenzoate Sunscreen Agent

Supporting Information

Chensheng Ma,*a Chris Tsz-Leung Chan,a Ruth Chau-Ting Chan,b Allen Ka-Wa Wong,b Bowie Po-Yee Chung,b Wai-Ming Kwok*b

^aCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.

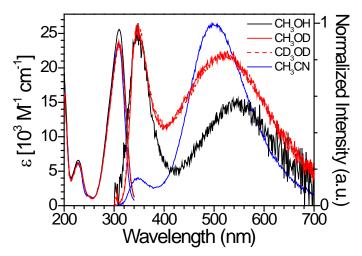
^bDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.

E-mail: macs@szu.edu.cn; wm.kwok@polyu.edu.hk

Equation of log-normal line shape function	2
Figure S1 Steady state UV-Visible absorption and normalized fluorescence spectra of MDMAB	A in CH ₃ OH,
CH ₃ OD, CD ₃ OD and CH ₃ CN.	2
Figure S2 Steady state UV-Visible absorption and normalized fluorescence spectra of EDMABA	A in CH ₃ OH,
CH ₃ CN and 70%H ₂ O/30%CH ₃ CN.	3
Figure S3 Fs-TRF spectra of MDMABA in CH ₃ OH.	3
Figure S4 Fs-TRF spectra of EDMABA in CH3CN, CH3OH and 70%H2O/30%CH3CN	4
Figure S5 Fs-TRF anisotropy spectra of EHDMABA in 70%H ₂ O/30%CH ₃ CN	4
Figure S6 Fs-TRF spectra of EHDMABA in CH ₃ OD and 70%D ₂ O/30%CH ₃ CN	5
Figure S7 Experimental and fitted kinetic intensity decays of fs-TRF for MDMABA in CH ₃ OH ar	d EDMABA
in 70%H ₂ O/30%CH ₃ CN and comparison of the fs-TRF decay for MDMABA in CH ₃ OH, CH ₃ OD,	CD ₃ OD and
CH ₃ CN and EDMABA in CH ₃ OH, CH ₃ CN and 70% H ₂ O/30% CH ₃ CN	5
Figure S8 Fs-TRF spectra of MDMABA in CH ₃ OD.	6
Figure S9 Broadband fs-TA of MDMABA in CH ₃ CN and in CH ₃ OH	6
Figure S10 Broadband fs-TA of EDMABA in CH ₃ CN and in CH ₃ OH	7
Figure S11 Experimental and fitted kinetic trace of the fs-TA of EHDMABA in CH ₃ CN, CH ₃ OH, a	nd
70% H ₂ O/30% CH ₃ CN	7

Equation of log-normal line shape function

Log-normal line shape function used to simulate the experimentally measured fs-TRF spectra in CH₃OH and CH₃OD is as following:


$$F(\upsilon) = \begin{cases} \exp[-\ln(2)\{\ln(1+\alpha)/\gamma\}^2] & \alpha > -1 \\ 0 & \alpha \le -1 \end{cases}$$

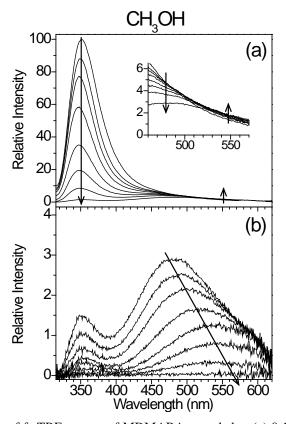
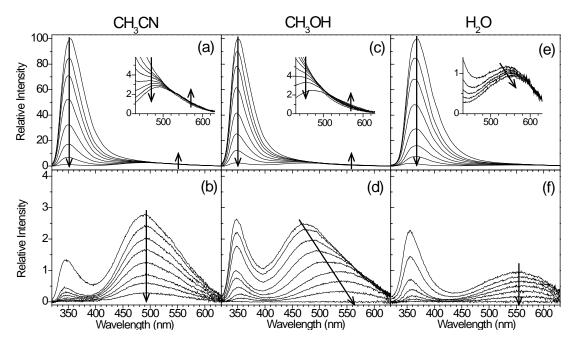
$$\alpha = 2\gamma(\upsilon - \upsilon_P)/\Delta$$

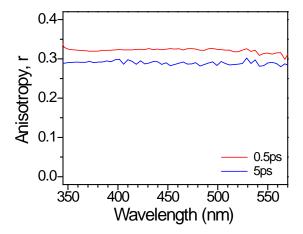
The four parameters, the peak height h, the peak frequency v_p , the asymmetry parameter γ and the width parameter Δ are adjusted in a nonlinear least-square fitting to simulate the spectral profile of the steady state and fs-TRF spectra. Prior to the spectral simulation, the spectra have to convert from the unit of wavelength (λ in nm) to wavenumber (v in cm⁻¹) by using a relation $F(v) = \lambda^2 F(\lambda)$.

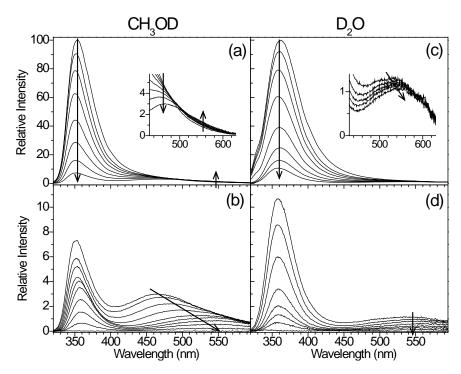
The log-normal simulation can also produce the integrated intensity (I) of the spectra as expressed in the following equation:

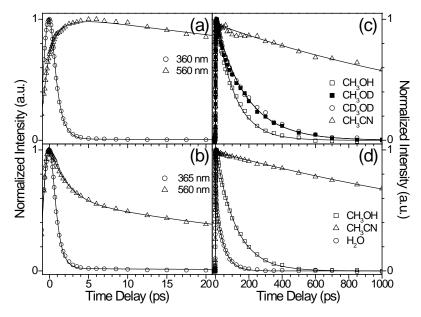
$$I = \left(\frac{\pi}{4\ln(2)}\right)^{1/2} h\Delta \exp\left(\frac{\gamma^2}{4\ln(2)}\right)$$

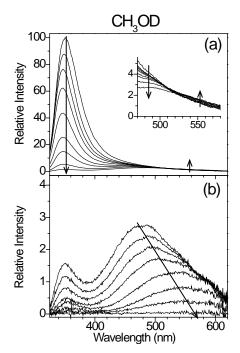
Figure S1 Steady state UV-Visible absorption and normalized fluorescence spectra of MDMABA in CH₃OH, CH₃OD, CD₃OD and CH₃CN.

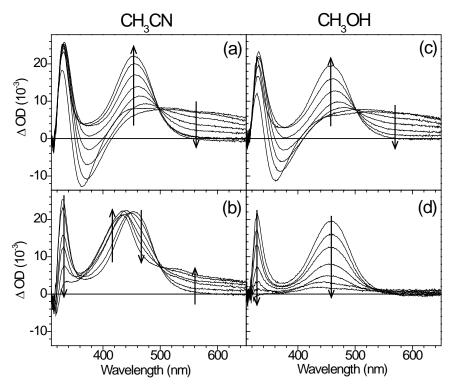




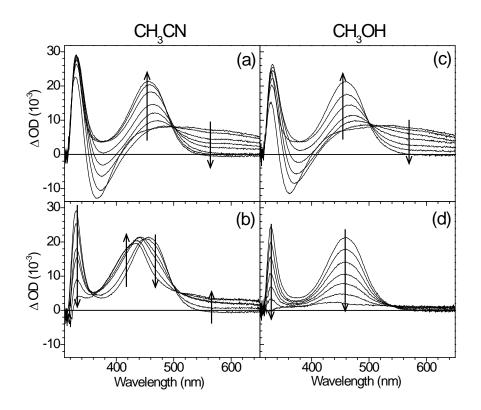

Figure S2 Steady state UV-Visible absorption and normalized fluorescence spectra of EDMABA in CH_3OH , CH_3CN and $70\%H_2O/30\%CH_3CN$.


Figure S3 Temporal evolution of fs-TRF spectra of MDMABA recorded at (a) 0-5 ps (0, 0.3, 0.5, 0.7, 1, 1.25, 1.75, 2, 2.5, 5 ps) and (b) 5-500 ps (5, 7, 10, 17.5, 35, 85, 200, 500 ps) in CH_3OH after photo-excitation The scale of the "Relative Intensity" is enlarged ~25 times in (b) relative to (a). The inset in (a) shows the magnified view of the spectral evolution. The arrows represent the temporal evolution of the spectra.


Figure S4 Temporal evolution of fs-TRF spectra of EDMABA recorded at (a) 0-5 ps (0, 0.4, 0.6, 0.85, 1.25, 1.75, 2.5, 5 ps) and (b) 5-6000 ps (4, 200, 700, 1250, 2000, 3000, 4000, 6000 ps) in CH₃CN; (c) 0-5 ps (0, 0.4, 0.6, 0.85, 1.25, 1.75, 2.5, 5 ps) and (d) 5-1000 ps (5, 6, 8.5, 12.5, 20, 40, 85, 175, 300, 1000 ps) in CH₃OH; (e) 0-5 ps (0, 0.4, 0.6, 0.85, 1.25, 1.75, 2.5, 5 ps) and (f) 5-300 ps (5, 10, 17.5, 30, 50, 85, 300 ps) in 70% H₂O/30% CH₃CN after photo-excitation. The scale of the "Relative Intensity" is enlarged ~25 times in both (b) relative to (a), (d) relative to (c) and (f) relative to (e). The inset in (e) displays the enlarged view of the fs-TRF spectra at ~2.5 to 5 ps in 70% H₂O/30% CH₃CN after photo-excitation. The arrows represent the temporal evolution of the spectra.


Figure S5 fs-TRF anisotropy spectra of EHDMABA in 70% H₂O/30% CH₃CN recorded at 0.5 and 5 ps after photoexcitation.


Figure S6 Temporal evolution of fs-TRF spectra of EHDMABA recorded at (a) 0-4 ps (0, 0.4, 0.6, 0.85, 1.25, 1.75, 2.5, 4 ps) and (b) 4-2000 ps (4, 5, 8.5, 15, 30, 50, 100, 200, 400, 2000 ps) in CH₃OD; (c) 0-4 ps (0, 0.4, 0.6, 0.85, 1.25, 1.75, 2.5, 4 ps) and (d) 4-1000 ps (4, 8.5, 20, 50, 85, 125, 200, 1000 ps) in $70\%D_2O/30\%CH_3CN$ after photo-excitation. The scale of the "Relative Intensity" is enlarged ~8 times in both (b) relative to (a) and (d) relative to (c). The arrows represent the temporal evolution of the spectra.


Figure S7 Experimental and fitted kinetic intensity decays of fs-TRF at early time delay for (a) MDMABA in CH₃OH and (b) EDMABA in 70%H₂O/30%CH₃CN up to ~20 ps; and comparison of ~560 nm fs-TRF decay for (c) MDMABA in CH₃OH (□), CH₃OD (\blacksquare), CD₃OD (\bigcirc) and CH₃CN (\triangle); and (d) EDMABA in CH₃OH (□), CH₃CN (\triangle) and 70%H₂O/30%CH₃CN (\bigcirc) at late time delay up to ~1 ns.

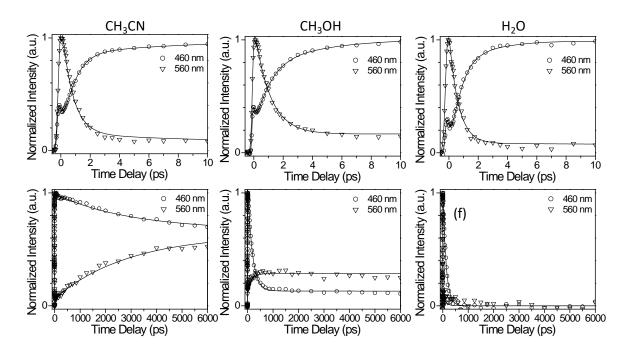

Figure S8 Temporal evolution of fs-TRF spectra of MDMABA recorded at (a) 0-5 ps (0, 0.5, 0.7, 1, 1.5, 2, 3, 5 ps) and (b) 5-700 ps (5, 7, 10, 15, 30, 100, 250, 700 ps) in CH₃OD after photo-excitation. The scale of the "Relative Intensity" is enlarged ~25 times in (b) relative to (a). The insets in (a) shows the magnified view of the spectral evolution. The arrows represent the temporal evolution of the spectra.

Figure S9 Temporal evolution of broadband fs-TA of MDMABA recorded at (a) 0-100 ps (0, 0.25, 0.5, 0.85, 1.25, 3, 12.5, 100 ps), (b) 100-6000 ps (100, 500, 1500, 2000, 3500, 6000 ps) in CH₃CN, and recorded at (c) 0-20 ps (0, 0.25, 0.5, 0.85, 1.5, 3, 20 ps), (d) 20-6000 ps (20, 60, 100, 175, 250, 400, 6000 ps) in CH₃OH after photo-excitation. The arrows indicate temporal evolution of the spectra.

Figure S10 Temporal evolution of broadband fs-TA of EDMABA recorded at (a) 0-100 ps (0, 0.25, 0.5, 0.85, 1.25, 3, 12.5, 100 ps), (b) 100-6000 ps (100, 500, 1500, 2000, 3500, 6000 ps) in CH₃CN, and recorded at (c) 0-20 ps (0, 0.25, 0.5, 0.85, 1.5, 3, 20 ps), (d) 20-6000 ps (20, 60, 100, 150, 200, 300, 6000 ps) in CH₃OH after photo-excitation. The arrows indicate temporal evolution of the spectra.

Figure S11 Experimental (circle, triangle) and fitted (line) kinetic trace of the fs-TA of EHDMABA at early (a, c, e) and late (b, d, f) times after the excitation in CH₃CN (a, b), CH₃OH (c, d) and 70% H₂O/30% CH₃CN (e, f).