# Far-IR and UV spectral signatures of stepwise complexation and microhydration of the polycyclic aromatic hydrocarbon acenaphthene

Alexander K. Lemmens<sup>a,b</sup>, Sebastien Gruet<sup>c,d,e</sup>, Amanda L. Steber<sup>\*c,d,e</sup>, Jens Antony<sup>f</sup>, Stefan Grimme<sup>f</sup>, Melanie Schnell<sup>c,d,e</sup> and Anouk M. Rijs<sup>\*a</sup>

<sup>a</sup>Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands.

<sup>b</sup>Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

<sup>c</sup>Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany

<sup>d</sup>Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 1, D-24118 Kiel, Germany

eThe Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany

<sup>f</sup>Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany

## **Corresponding Authors**

\*a.rijs@science.ru.nl, amanda.steber@desy.de

### **Table of contents**

#### **Figures**

Fig S.I. 1 Undesired gain/depletion effects

Fig S.I. 2 Large range Ace<sub>1</sub>-W<sub>2</sub> infrared spectrum

Fig S.I. 3 Ace<sub>n</sub> compared to B3LYP-D3 calculations

#### Tables

Table S.I. 1 UV frequencies used in IR-UV ion dip experiments

## **Figures**



Figure S.I.1: Far-IR spectra recorded in the mass channel of  $Ace_1-W_1$  recorded using different UV wavelengths. The green trace is recorded at a UV wavelength where predominantly the  $Ace_1-W_1$  complex is absorbing, thus recording a clean  $Ace_1-W_1$  infrared spectrum. Keeping in mind that light can also have a perturbative effect on the complexes (dissociative) and if UV wavelengths are used where also  $Ace_1-W_3$  is absorbing (blue/red), than IR absorption of higher order complexes can appear in the mass channel of the  $Ace_1-W_1$ . In the case of the red trace, additional absorption peaks are observed due to ground state depletion of  $Ace_1-W_1$ . In the case of the red trace, additional absorption peaks are observed due to *UV* radiation in the  $Ace_1-W_1$  channel anymore due to a change in FC overlap, leading to the additional absorption peaks. Infrared ion gain is observed (blue trace) as  $Ace_1-W_{1+x}$  complexes dissociate to  $Ace_1-W_1$  complexes under infrared radiation and are still ionized using UV radiation thereby resulting in an increase of ions in the  $Ace_1-W_1$  channel.



Figure S.I.2: Experimental (black) infrared spectra of the (a)  $Ace_1-W_1$  complex, the (b)  $Ace_1-W_2$  complex and the (c)  $Ace_1-W_3$  complex (bottom segment). The corrected (green) and uncorrected (blue) PBEh-3c/def2-mSVP calculated infrared spectra are added as well as the B3LYP-D3/6-311++G<sup>\*\*</sup> (yellow) and SCS(1.1;2/3)-MP2/def2-QZVP (red) calculations. The figure is complementary to Fig. 5, where in this figure a larger infrared range is shown for the  $Ace_1-W_2$  complex. The larger range shows the improvement by the anharmonic correction of the PBEh-3c functional for the peak at 1609 cm<sup>-1</sup>.



Figure S.I.3: Mid- to far-infrared gas phase action spectra of jet cooled  $Ace_n$  (n=1-3) complexes in black (segment a-c respectively). In blue the corresponding calculated spectra on the PBEh-3c/def2-mSVP level of theory (uncorrected). In this figure B3LYP-D3/6-311++G<sup>\*\*</sup> calculations are added with respect to Fig. 3 to illustrate that a good agreement with theory is also achieved using the B3LYP functional for the homogeneous Ace complexes which is not the case for the Ace<sub>1</sub>-W<sub>m</sub> (m=1-3) complexes.

| Ace <sub>1</sub>                 | 31474 cm <sup>-1</sup>                    |
|----------------------------------|-------------------------------------------|
| Ace <sub>2</sub>                 | 31374; 31637.5 and 31358 cm <sup>-1</sup> |
| Ace <sub>3</sub>                 | 31374; 31637.5 and 31358 cm <sup>-1</sup> |
| Ace <sub>1</sub> -W <sub>1</sub> | 32074 cm <sup>-1</sup>                    |
| Ace <sub>1</sub> -W <sub>2</sub> | 31536 cm <sup>-1</sup>                    |
| Ace <sub>1</sub> -W <sub>3</sub> | 32157 and 32126 cm <sup>-1</sup>          |
| Ace <sub>2</sub> -W <sub>3</sub> | 31367 cm <sup>-1</sup>                    |

Table S.I.1: UV frequencies used in the IR-UV ion dip spectra reported throughout this paper.