Supplementary Information for

Manipulating Molecular Order in Nematic Liquid Crystal Capillary Bridges via Surfactant Adsorption: Guiding Principles from Dissipative Particle Dynamics Simulations

Zeynep Sumer and Alberto Striolo*
Department of Chemical Engineering, University College London
London WC1E 7JE, United Kingdom

Table S1. Repulsion coefficients (α) used in the simulations in $\mathrm{k}_{\mathrm{B}} \mathrm{T}$ units.

	Water	$\boldsymbol{L C}$	$\boldsymbol{S}_{\text {head }}$	$\boldsymbol{S}_{\text {tail }}$
Water	25	50	25	50
$\boldsymbol{L C}$		25	50	20,25
$\boldsymbol{S}_{\text {head }}$			25	50
$\boldsymbol{S}_{\text {tail }}$				25

Table S2. Compositions of simulated systems with (a) 1000 surfactant molecules where $\alpha_{\text {LC- }}$ Stail $=25$; (b) 1500 surfactant molecules where $\alpha_{\text {LC-Stail }}=25$; and (c) 1000 surfactant molecules where $\alpha_{\text {LC-Stail }}=20$.

	Water	LC	Surfactant
\boldsymbol{a}	65.43%	22.22%	12.35%
\boldsymbol{b}	59.26%	22.22%	18.52%
\boldsymbol{c}	65.43%	22.22%	12.35%

Table S3. Orientational order parameters (S) of LC molecules when different surfactants are adsorbed on the LC cylinder with $\mathrm{S}_{\text {head }} / \mathrm{S}_{\text {tail }}=$ (a) $3 / 5$, (b) $7 / 5$, and (c) $5 / 7$ at $0.7 \mathrm{k}_{\mathrm{B}} \mathrm{T}$. Data are shown as a function of distance from the cylindrical axis $\left(r_{c}=0\right)$. Values given in bold are the results discussed in the paper.

	Head Beads	Tail Beads	$\boldsymbol{S}\left(\boldsymbol{r} \leq \mathbf{5} \boldsymbol{r}_{\boldsymbol{c}}\right)$	$\boldsymbol{S}\left(\boldsymbol{r}>\mathbf{5} \boldsymbol{r}_{\boldsymbol{c}}\right)$	$\boldsymbol{S}_{\text {overall }}$
	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{0 . 5 7} \pm \mathbf{0 . 0 5}$	$\mathbf{0 . 4 3} \pm \mathbf{0 . 0 3}$	$\mathbf{0 . 4 9} \pm \mathbf{0 . 0 3}$
\boldsymbol{a}^{*}	3	5	0.53 ± 0.05	0.37 ± 0.04	0.44 ± 0.03
\boldsymbol{b}	7	5	0.54 ± 0.05	0.41 ± 0.03	0.46 ± 0.03
	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{0 . 5 3} \pm \mathbf{0 . 0 5}$	$\mathbf{0 . 2 7} \pm \mathbf{0 . 0 4}$	$\mathbf{0 . 3 8} \pm \mathbf{0 . 0 4}$
\boldsymbol{c}	5	7	0.57 ± 0.03	0.27 ± 0.04	0.39 ± 0.02

[^0]

Figure S1. Normalized pressures of the systems with (a) 1000 surfactant molecules where $\alpha_{\text {LC-Stail }}=25$; (b) 1500 surfactant molecules where $\alpha_{\text {LC-Stail }}=25$; and (c) 1000 surfactant molecules where $\alpha_{\text {LC-Stail }}=20$. The legend is the same for (a), (b) and (c).

Figure S2. Volume change of the system that was simulated for additional $0.14 \mu \mathrm{~s}$ in NPT ensemble.

Figure S3. Configurations of LC and 1000 surfactant molecules with $\mathrm{S}_{\text {head }} / \mathrm{S}_{\text {tail }}=$ (a) $3 / 5$ (b) $7 / 5$ and (c) $5 / 7$ at $0.7 \mathrm{k}_{\mathrm{B}}$ T. Water beads are not shown for clarity. The change in orientation in LCs is due to interactions with surfactants with $\mathrm{S}_{\text {head }} / \mathrm{S}_{\text {tail }}=$ (d) $3 / 5$, (e) $7 / 5$, and (f) $5 / 7$. LCs that are located in the core of cylindrical radius $\left(\mathrm{r}_{\mathrm{c}} \leq 5\right)$ are shown in orange, the rest in grey.

Water and surfactant beads are not shown for clarity.

Figure S4. Orientational order as a function of position within the LC cylinder, surface covered by 1000 surfactant molecules. In these simulations $\alpha_{\text {LC-Stail }}=25$. Blue lines represent surfactants with 5 bead-long tails, green lines represent 7 bead-long tails.

[^0]: * Simulation was conducted for $0.894 \mu \mathrm{~s}$, and the result is the outcome of last $0.149 \mu \mathrm{~s}$. See narrative for relevant discussion on the simulation length.

