Supplementary Information

Confinement of ionic liquids aqueous mixtures between amorphous TiO₂ slit nanopores: electrostatic field induction

Fatemeh Mohammadpour,^{1,2} Maryam Heydari Dokoohaki, ¹ Amin Reza Zolghadr^{*,1},

Mohammad Hadi Ghatee, ¹ Mahmood Moradi³

¹Department of Chemistry, Shiraz University, Shiraz, 71946-84795, Iran ² Department of Physics, Farhangian University, Shiraz, Iran. ³Department of Physics, Shiraz University, Shiraz, 71946-84795, Iran Tel: +98 713 613 7157, Fax: +98 713 646 0788, E-mail: <u>arzolghadr@shirazu.ac.ir</u>

atom	q/e B3LYP NBO	atom	q/e B3LYP NBO
N ₁	-0.357	В	1.331
C ₂	0.606	F ₁	-0.539
N ₃	-0.355	F ₂	-0.579
C ₄	0.207	F ₃	-0.587
C ₅	0.210	F ₄	-0.587
C ₆	0.317		
C ₇	0.276		
C ₈	0.025		
C ₉	0.002		
C ₁₀	0.029		

Table S1. The obtained partial atomic charges of [C₄mim]BF₄.

atom	q/e B3LYP NBO	atom	q/e B3LYP NBO
N ₁	-0.365	C1	-0.850
C ₂	0.571		
N ₃	-0.375		
C ₄	0.187		
C ₅	0.206		
C ₆	0.303		
C ₇	0.281		
C ₈	0.010		
C ₉	0.008		
C ₁₀	0.024		

Table S2. The obtained partial atomic charges of [C₄mim]Cl.

Table S3. The obtained partial atomic charges of $[C_4 mim]PF_{6.1}$

atom	q/e CPMD ESP	atom	q/e CPMD ESP
N ₁	-0.357	Р	2.554
C ₂	0.604	F ₁	-0.567
N ₃	-0.355	F ₂	-0.569
C ₄	0.210	F ₃	-0.608
C ₅	0.213	F ₄	-0.600
C ₆	0.318	F ₅	-0.607
C ₇	0.275	F ₆	-0.572
C ₈	0.025		
C ₉	0.003		
C ₁₀	0.032		

TiO ₂ (1)		TiO _{2_} (2)	
temperature (⁰ K)	Time (ps)	temperature (⁰ K)	Time (ps)
5000	100	5000	100
3000	100	3000	100
2500	100	2500	100
2000	100	2000	100
1500	100	1500	100
1000	100	1000	100
900	100	500	100
800	100	400	100
700	100	300	100
600	100		
500	100		
400	100		
380	100		
360	100		
340	100		
320	100		
300	100		

Table S4. Details of annealing rates to produce amorphous slabs with different surface charges.

Table S5. Comparison of density and viscosity of simulated aqeous solution of IL (3 M aqeous solution of [C₄mim]Cl) with our experimental data

[C ₄ mim]-Cl	Experiment.	Simulation
Density (gcm ⁻³)	1.037	1.056
Viscosity (cP)	2.246	1.762

Fig. S1 Optimized molecular structures of ionic liquids (A) [C₄mim][BF₄], (B) [C₄mim][PF₆]and (C) [C₄mim][Cl] including the atoms' label. ([C₄mim]:1-buthyle-3-methyle-imidazolium)

Fig. S2 Snapshots of melting a crystal and formation of amorphous TiO₂ structure.

Fig. S3 Radial distribution functions between anion and cation centers of masses of the bulk IL systems (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆].

Fig. S4 Pair correlation functions g(r) of cation-TiO₂ walls and anion-TiO₂ walls of bulk phase of the ILs confined inside two amorphous TiO₂ walls with pore size of 10 nm, for (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆]. See Figure 2 for TiO₂(1) and (2) labels.

Fig. S5 Two-dimensional pair correlation functions, $g_parallel(R)$, of cation-TiO₂ walls and anion-TiO₂ walls in the plane parallel to the slabs of bulk phase of the ILs confined inside two amorphous TiO₂ walls with pore size of 10 nm, for (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆]. See Figure 2 for TiO₂(1) and (2) labels.

Fig. S6 Two-dimensional radial distribution functions, g_parallel(R), of cation-anions for confined pure IL, confined aqueous mixture of IL, and IL bulk systems. (A) [C₄mim][BF₄], (B) [C₄mim][Cl] (C) [C₄mim][PF₆].

Fig. S7 Radial distribution functions of cation-anions for confined pure IL, confined aqueous mixture of IL, and IL bulk systems. (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆]. In all cases, the correction was done based on the excluded volume effect.

Fig. S8 Snapshots of aqueous mixtures of 360 molecule of ILs confined inside two amorphous TiO_2 walls with a 10 nm pore size, (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆]. Number of water molecules is 3289, 3782 and 2933 for (A), (B) and (C) systems, respectively. Ti, O, Cl, N and C atoms are depicted in pink, red, green, blue and cyan, respectively. F atoms of BF₄ and PF₆ anions are depicted in orange and yellow, respectively.

Fig. S9 Radial distribution functions g(r) of cation-pore wall and anion-pore wall of aqueous mixture of 360 ILs confined inside pores with two amorphous TiO₂ walls; (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆]. See Figure 2 for TiO₂(1) and (2) labels.

Fig. S10 Number density profiles of aqueous mixture of [C₄mim][Cl] IL confined inside pore, while the potential applied to keep the two amorphous TiO₂ walls at the same potential.

Fig. S11 The cation-cation and anion-anion radial distribution function for confined [C4mim]Cl,

[C₄mim]BF₄, and [C₄mim]PF₆ aqueous systems at two different concentrations.

Fig. S12 Snapshots (A and D), number density profiles (B and E), and radial distribution functions (C and F) of dilute mixtures of $[C_4mim][Cl]$ confined inside pores with two amorphous TiO₂ walls with width of 2.5 nm. (Top panel: 10 molecules of $[C_4mim][Cl]$ and bottom panel 20 molecules of $[C_4mim][Cl]$). See snapshots (A and D) for TiO₂(1) and (2) labels. Number of water molecules is 1188 and 1469 in (A) and (B) respectively.

Fig. S13 Radial distribution functions of (A) $C1...TiO_2$ walls and (B) $[C_4mim]...TiO_2$ walls of dilute mixture of $[C_4mim][C1]$ confined inside pores with two amorphous TiO_2 walls at different simulation times.

Fig. S14 Snapshots of dilute mixture of ILs confined inside pores with two amorphous TiO₂ walls, (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆]. Number of water molecules is 6789, 6811 and 6794 in (A), (B) and (C) respectively.

Fig. S15 (Top panel) Radial distribution functions g(r) of cation-anion, cation-pore walls and anion-pore walls of dilute mixture of ILs confined inside pores with two amorphous TiO₂ walls; (Bottom panel) Number density profiles of dilute mixture of ILs confined inside pores with two amorphous TiO₂ walls along the z-direction; (A and D) [C₄mim][BF₄], (B and E) [C₄mim][PF₆] and (C and F) [C₄mim][Cl]. See Figure 2 for TiO₂ (1) and (2) labels.

Fig. S16 Temporal development of distance between cations and anions in different systems of (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆].

Fig. S17 Radial distribution functions between anion and cation centers of masses of the bulk dilute electrolytes consist of 10 ion pairs of (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆].

Fig. S18 Snapshots of the dilute (not confined) electrolytes consist of 10 ion pairs of (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆]. Number of water molecules is 6789, 6811 and 6794 in (A), (B) and (C), respectively.

Fig. S19 Snapshot (A), number density profiles (B) and radial distribution functions (C) of dilute mixtures of KCl confined inside pores with two amorphous TiO₂ walls with width of 10 nm. Number of water molecules is 6800. Ti, O, K, Cl, N and C atoms are depicted in pink, red, purple, green, blue and cyan, respectively.

Fig. S20 Mean-squared displacement of geometrical center of IL ions in mixtures confined between two amorphous TiO₂ walls with a 10 nm size pore, (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆].

Fig. S21 Mean-squared displacement of geometrical center of IL ions in dilute mixtures confined between two amorphous TiO_2 walls with a 10 nm size pore, (A) [C₄mim][BF₄], (B) [C₄mim][Cl] and (C) [C₄mim][PF₆]. The MSDs reported here are in the *xy*-direction parallel to the amorphous walls.

Fig. S22 Time correlation functions between C_2 atom of imidazolium ring and Cl anion for bulk system and aqueous mixtures of [C₄mim][Cl] with 360, 50 and 10 ion pairs confined inside two amorphous TiO₂ walls with pore size of 10 nm.

References:

1 M.H. Ghatee and A.R. Zolghadr, J. Phys. Chem. C., 2013, 117, 2066-2077.