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Section I Composition of reference database

Table S1. The composition of reference database for Cu machine learning force field.

Pristine Vacancy Interstitial
Num. of
Structures

Num. of
Atoms

Num. of
Structures

Num. of
Atoms

Num. of
Structures

Num. of
Atoms

Fcc 3200 166400 3200 159632 3200 170594
surface (110) 1200 99200 1200 95554 - -
surface (111) 920 94080 920 91007 - -
amorphous 2800 115200 2800 110231 2800 118414
            Total Structures: 22240
            Total Atoms: 1220312

Table S2. The composition of reference database for SiO2 machine learning force field.

Pristine Vacancy Interstitial
Num. of
Structures

Num. of
Atoms

Num. of
Structures

Num. of
Atoms

Num. of
Structures

Num. of
Atoms

quartz 9950 147600 4798 120557 1950 47996
cristobalite 7900 153600 3700 120691 1794 62433
quartz 
surface (110) 2500 54000 500 8492 - -

cristobalite 
surface (111) 2500 72000 498 11434 - -

amorphous 3000 63000 200 3983 100 2200
            Total Structures: 39390
            Total Atoms: 867986
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Section II Test of cutoff distance Rc

The cutoff distance Rc of structural fingerprints is determined by the convergence test. The force 
prediction error usually reduces with the increasing of cutoff distance Rc. However, the decrease of error is 
not significant anymore when the Rc is large enough. So, we empirically decide the value of Rc as the position 
that convergence curve becoming flat. In this test, the linear regression model is build to get the force 
prediction error.

FIG. S1. The cutoff distance convergence test for Cu.

FIG. S2. The cutoff distance convergence test for SiO2.
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Section III Genetical algorithm automatic selection protocol

Before the genetic algorithm selection, a large pool of fingerprint candidates is generated. In the genetic 
algorithm, one individual is corresponding to a set of fingerprints, which are selected from the candidate pool. 
The number of fingerprints in one individual, i.e. the length of gene, is fixed to N. The population size of any 
generation is fixed to M. 

 Step 1. The initial generation was created by randomly selecting N fingerprints from the candidate pool.
 Step 2. The linear regression model was constructed with each individual set of fingerprints, and the 

δRMS of the test set is calculated. The fitness of everyone is represented as [max(δRMS) - 
δRMS]/[max(δRMS) - min(δRMS)].

 Step 3. The individuals are randomly selected based on their fitness, and then, they went through 
crossover and mutation to create the new generation. Crossover means two individual exchange some 
of fingerprints. Mutation means substitute one fingerprints with another which randomly selected from 
candidate pool. The Mutation possibility is 20%.

 Step 4. Repeat the step 2 and 3 until the minimum δRMS,F is converged.
The Fig. S3 shows an example of how the GA automatic protocol select 8 fingerprints for Cu system 

(using set 4 as the candidate pool). The population size M is set to 144.

FIG. S3. The force prediction error δRMS of each individual along the genetic algorithm automatic selection 
protocol.
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Section IV ML force field under rotation operation

When a structure going though certain rotation operation, for example rotating the structure along the z-

axis for α degree, the position of each atom   changes to:�⃗�𝑖 = [𝑥,𝑦,𝑧]𝑇

(S4.1)�⃗�𝑖
' = 𝑆 ∙ �⃗�𝑖

in which S is the rotation matrix:

(S4.2)
𝑆 = [𝑐𝑜𝑠𝛼 ‒ 𝑠𝑖𝑛𝛼 0

𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0
0 0 1]

In addition, the force experienced by each atom will also changes to:�⃗�𝑖 = [𝐹𝑥
𝑖 ,𝐹𝑦

𝑖 ,𝐹𝑧
𝑖]𝑇

(S4.3)�⃗�𝑖
' = 𝑆 ∙ �⃗�𝑖

However, not all the ML force fields follow the equation S4.3. Next, we are going to prove that the linear 
model (LM) and neural network model 1 (NNM1) abide equation s4.3 but the neural network model 2 (NNM2) 
cannot.

First of all, a fingerprint matrix Vi, which contains n vectorial fingerprints of ith atom along x, y and z 
directions, is introduced:

(S4.4)

𝑉𝑖 = [𝑉1,𝑥
𝑖 ⋯ 𝑉𝑛,𝑥

𝑖
𝑉1,𝑦

𝑖 ⋯ 𝑉𝑛,𝑦
𝑖

𝑉1,𝑧
𝑖 ⋯ 𝑉𝑛,𝑧

𝑖
]

According to the formula of radial and angular vectorial fingerprints (equation 3 and 4), we can easily 
demonstrate that the fingerprint matrix will change to:

(S4.5)𝑉'
𝑖 = 𝑆 ∙ 𝑉𝑖

after the rotation operation.

(I) Linear model
The linear model can be descripted as:

(S4.6)�⃗�𝑖 = 𝑉𝑖 ∙ �⃗�

in which W is the weight parameters of linear regression, . When the structure going through �⃗� = [𝑤1⋯𝑤𝑛]𝑇

the rotation operation, the force of ith atom can be represented as:

(S4.7)�⃗�𝑖
' = 𝑉'

𝑖 ∙ �⃗� = 𝑆 ∙ 𝑉𝑖 ∙ �⃗� = 𝑆 ∙ �⃗�𝑖

(II) Neural network model 1
The neural network model type 1 utilized only linear activation functions and do not use bias for nodes. 

As a result, the model can be expressed as:

(S4.8)�⃗�𝑖 = 𝑉𝑖 ∙ 𝑊01 ∙ 𝑊1,2⋯𝑊𝑘 ‒ 1,𝑘

in which Wk-1,k is the matrix of weight parameters between the k-1th and kth layers. Then the force after rotation 
changes to:

(S4.9)�⃗�𝑖
' = 𝑉'

𝑖 ∙ 𝑊01 ∙ 𝑊1,2⋯𝑊𝑘 ‒ 1,𝑘 = 𝑆 ∙ 𝑉𝑖 ∙ 𝑊01 ∙ 𝑊1,2⋯𝑊𝑘 ‒ 1,𝑘 = 𝑆 ∙ �⃗�𝑖

(III) Neural network model 2
The neural network model type 2 utilized hypertangent activation, and the model can be expressed as:

 (S4.10)�⃗�𝑖 = 𝑡𝑎𝑛ℎ(𝑡𝑎𝑛ℎ(𝑡𝑎𝑛ℎ(𝑉𝑖 ∙ 𝑊01) ∙ 𝑊1,2)⋯𝑊𝑘 ‒ 1,𝑘)
Because of the employ of the non-linear activation, the equation S4.10 cannot deduce the equation S4.3.
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Section V ML force field for SiO2 with Coulomb interaction

The charge-explicit ML force field contains two linear regression models that predict the short- and long-
range force respectively.

First of all, we should split the QM forces into short- and long-range parts in a reasonable way, since they 
are not directly accessible from the DFT calculation. A simple way is that we define the long-range part as the 
Coulomb force. The short-range part is total QM force minus the Coulomb force. The Coulomb force can be 
calculated with Coulomb law or Ewald summation based on the Bader charge analysis. However, such 
splitting method would increase the corrugation of short-range force (as mentioned in Ref 1), and increase the 
difficulty of fitting. As a result, a screening function is introduced, and the long-range force is defined as:

(S5.1)

⃗𝐹𝑙𝑜𝑛𝑔 = ∑
𝑖
∑
𝑗 ≠ 𝑖

𝑓𝑠𝑐𝑟𝑒𝑒𝑛(𝑅𝑖𝑗) ×
𝑞𝑖𝑞𝑗

𝑅3
𝑖𝑗

∙ 𝑅𝑖𝑗

while the screening function fscreen is:

(S5.2)
𝑓𝑠𝑐𝑟𝑒𝑒𝑛(𝑅𝑖𝑗) = {1

2[1 ‒ 𝑐𝑜𝑠(𝜋𝑅𝑖𝑗

𝑅𝑐
)]

1
  

𝑓𝑜𝑟 𝑅𝑖𝑗 ≤ 𝑅𝑐
𝑓𝑜𝑟 𝑅𝑖𝑗 > 𝑅𝑐�

As a consequence, the short-range force is:
(S5.3)𝐹𝑠ℎ𝑜𝑟𝑡 = 𝐹𝑄𝑀 ‒ 𝐹𝑙𝑜𝑛𝑔

Then, the ML model for short-range force is constructed int the same way as the ordinary ML force field, 
i.e. using vectorial fingerprints as inputs and short-range forces as targets. In addition, another ML model is 
built to predict the environment-dependent atomic charges based on the chemical environment. The charge 
prediction model utilizes the Belher-Parrinello symmetry functions as the structural fingerprints and Bader 
charges as the target properties. The predicted long-range force is evaluated from equation S5.1 with the 
predicted atomic charge.

A part of the SiO2 database (amorphous structure) was used to test the above method. As shown in Fig. 
S4, the δRMS of the atomic charge is 0.023e (O, 0.020; Si, 0.029). As consequence, the δRMS of the long-range 
force is 0.0042 eV/Å (O, 0.003; Si 0.007). On the other hand, the δRMS of short-range force is 0.146 eV/Å (O, 
0.113; Si 0.213). The total force, as sum of short- and long-range forces, has the δRMS of 0.147 eV/Å (O, 0.113; 
Si 0.214). We found that the long-range forces that outside cutoff distance can be predicted quite accurately 
in this method, however, the short-range force prediction has been the main error source. As a comparison, 
the linear regression force field was constructed with the same set of reference data, and its δRMS is 0.150 eV/Å 
(O, 0.115; Si 0.218). Surprisingly, we found that ML model with coulomb interaction does not obviously 
accurate than that without coulomb interaction. It is also reported that the explicit consideration of charges 
does not improve the overall accuracy in the construction of high-dimensional NN potential for zinc oxide. 

Furthermore, we calculated the Coulomb force inside 8 Å cutoff distances and compare it with the QM 
forces. The result is given in Fig. S5. We can not find the clear relationship between Coulomb forces and QM 
forces, which implies that the QM effects plays very important role in the force calculation, and only the 
accurate electrostatic model is not enough for the construction of multicomponent force fields. 

In addition, to clarify the cutoff distance for the short-distance interaction, we test a serial of cutoff 
distance Rc varies from 3 to 8 Å using the same reference database, and the RMSEs of models (both with and 
without explicit Coulomb interaction) are listed in table S3. When Rc is 7 and 8 Å, explicit Coulomb force 
prediction do improve the accuracy, in compare with the ordinary force field. For Rc = 7 Å, the improvement 
is more significant. However, the charge-explicit FF performs worse than the ordinary one when Rc <7 Å. To 
explain it, we plot the variance of one QM force component along a short MD trajectory, as well as the short-
range force. As we can see, the corrugation of short force is increased substantially when the Rc is decreased 
from 8 to 3 Å, which certainly increased the difficulty of model fitting. 
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FIG. S4 The comparison of (a) short-range forces, (b) atomic charges, (c) long-range forces and (d) total forces 
of O atoms predicted with charge-explicit ML force field with the reference DFT results.  The (e) – (h) show 
the corresponding plots for Si atoms.
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FIG S5. The comparison of Coulomb force calculated with the ML predicted charges and the DFT forces.

Table S3  The effect of cutoff distance on the charge-explicit ML force field.
Without Coulomb With CoulombCutoff distance

Total force Total force Short Long
8.0 0.150 0.147 0.146 0.0042
7.0 0.157 0.150 0.149 0.0063
6.0 0.166 0.178 0.177 0.0091
5.0 0.178 0.223 0.222 0.0139
4.0 0.206 0.392 0.388 0.0223
3.0 0.293 1.083 1.066 0.0565

FIG. S6  The variation of one force component along a short MD trajectory. The QM force and the short-range 
forces inside 3 and 8 Å cutoff distances are shown. The corrugation of short force variation clearly increased 
when shorter cutoff distance applied.



9

Section VI Energy variation along NVT and NVE-MD

Additional test of force field is performed by utilizing it in the MD with NVE and NVT ensemble. In 
NVT-MD, the Nose-Hoover thermostat is employed to control the temperature. During the MD run, the 
evolution of energies, including kinetic and potential energies, are computed. The evolution of potential energy 
is calculated with:

(S6.1)
𝐸𝑝𝑜𝑡(𝑡 + ∆𝑡) = 𝐸𝑝𝑜𝑡 + ∆𝑡 × ∑

𝑖
∑

𝛼

𝐹𝛼
𝑖 ∙ 𝑣𝛼

𝑖

in which, Fi
α and vi

α are the force and velocity components of ith atom along α (α=x, y or z) direction.

Figure S5 shows the variation of energies and temperature along the MD simulations. The MD are 
performed with both LM and LMM force fields. The fcc-Cu and quartz-SiO2 are used as the initial structures. 
The initial temperatures of NVE-MDs are set as 500 K. From the Fig S5(a), we found that the total energies 
(sum of kinetic and potential energy) are basically constants along the MD runs. The insert figure gives the 
enlarged view of total energy variation. The fluctuation is very small, and basically within ± 1×10-5 eV/atom. 
The Fig S5(b) shows the temperature variation along the NVT-MD with the Nose-Hoover thermostat. The 
temperature of system fluctuates around the setting temperature (500K) after the initial equilibration, which 
demonstrates that the thermostat is also applicable for the ML force field.

FIG. S7. (a) Potential energy, kinetic energy and total energy obtained for NVE MD. The insert gives the 
enlarged view of total energy evolution. (b) Temperature fluctuation of system along the NVT MD with 
Nose-Hoover thermostat. 
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Section VII. Comparison of ML force field and high-dimensional NN potential

The high-dimensional NN potentials (HD-NNP) are constructed used the same reference database as the 
ML force fields. The symmetry functions were chosen as the structural descriptors for NN potential. Same 
with the fingerprints, the cutoff distance rc was set to 6.5 Å for Cu, and 8 Å for SiO2. For convenience, we 
adopted the parameters of fingerprint set (8) of Cu, and parameters of set (5) of SiO2. The detailed method the 
high-dimensional neural network construction can be seen in Ref. 2.

The NN potential for Cu has an architecture of 32-20-20-20-1, since the reduction of error is only margin 
if further increase the number of nodes. The δRMS of energy is 3.7 meV/atom for the training set and 4.0 
meV/atom for the testing set. The δRMS,F  is 0.11 eV/Å. Such accuracy is comparable with the NN potential of 
Cu built in Ref. (3), whose δRMS of energy and force is 3.9 meV/atom and 0.079  eV/Å, respectively.  It is 
obvious that the ML force fields have higher force prediction accuracy than NN potential, in the case of Cu. 

The architecture of 256-5-5-5-1 is adopted for SiO2 NN potential, and its δRMS,E is 4.8 meV/atom for the 
training set and 5.0 meV/atom for the testing set. The δRMS,F  is 0.23 eV/Å which is close to the linear regression 
force fields, but still not as accurate as the mixture model force fields.

The NN potentials were used in the various atomic simulation, as we described in the Section V. The 
results of RDF, ADF and barrier energy are also shown in the Fig. S6-8. As we can see, the results of NN 
potentials also have excellent agreement with that of DFT. However, the ML force fields, especially, the 
mixture model one, comparable or better than the NN potential across all regions. It can be attribution to the 
higher force prediction accuracy of ML force fields.

FIG. S8. The radial distribution function averaged over the 2.5 ps MD simulations based on density functional 
theory, linear regression / mixture model force fields and neural network potential. (a) fcc-Cu; (b) quartz-SiO2; 
(c) cristobalite-SiO2.

  
FIG. S9. The angular distribution function averaged over the 2.5 ps MD simulations based on density 
functional theory, linear regression / mixture model force fields and neural network potential. (a) fcc-Cu; (b) 
quartz-SiO2; (c) cristobalite-SiO2. The angles are determined with the maximum bond length of 3.0 Å.
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FIG. S10. The potential energy profile along the vacancy migration pathway in bulk Cu, which obtained in 
NEB calculation.
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Section VIII Gaussian mixture model groups of Cu fingerprints

FIG S11. Structural fingerprints of Cu atoms in principal component space.

FIG S10. The local structure of 9 types of Si. The type 0 and 3 located around vacancy; type 4, 5, 6 and 7 
located around interstitial; type 2 and 3 located on the surface; and type 8 is bulk atom.
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Section IX Parameters of structural fingerprints

Table S4. The parameters of structural fingerprints of Cu, set 1
type η Rs

1 radial 0.001 0.0
2 radial 0.03 0.0
3 radial 0.07 0.0
4 radial 0.14 0.0
5 radial 0.25 0.0
6 radial 0.40 0.0
7 radial 0.70 0.0
8 radial 1.40 0.0
9 radial 1.40 2.0
10 radial 1.40 2.5
11 radial 1.40 3.0
12 radial 1.40 3.5
13 radial 1.40 4.0
14 radial 1.40 4.5
15 radial 1.40 5.0
16 radial 1.40 5.5

Table S5. The parameters of structural fingerprints of Cu, set 2
type η Rs ζ θs

1 radial 0.001 0.0
2 radial 0.03 0.0
3 radial 0.07 0.0
4 radial 0.14 0.0
5 radial 0.25 0.0
6 radial 0.40 0.0
7 radial 0.70 0.0
8 radial 1.40 0.0
9 angular 0.0003 0.0 1 0
10 angular 0.0003 0.0 1 π/2
11 angular 0.0003 0.0 1 π
12 angular 0.0003 0.0 1 3π/2
13 angular 0.0003 0.0 4 0
14 angular 0.0003 0.0 4 π/2
15 angular 0.0003 0.0 4 π
16 angular 0.0003 0.0 4 3π/2

Table S7. The parameters of structural fingerprints of Cu, set 3
type

1~119 radial η:    0.001  0.015  0.03  0.05  0.07  0.10  0.14  0.18  0.25  0.30  0.40  0.50  0.70  1.00 
 1.40  2.00  3.50

Rs:  0    1.0   2.0   2.5   3.0   4.0   5.0  

Table S8. The parameters of structural fingerprints of Cu, set 4
type

1~51 radial η:    0.001  0.015  0.03  0.05  0.07  0.10  0.14  0.18  0.25  0.30  0.40  0.50  0.70  1.00 
 1.40  2.00  3.50

Rs:  0    2.5   5.0  
52~117 angular η:    0.001  0.015  0.03  0.05  0.07  0.10  0.14  0.18  0.25  0.30  0.40  0.50  0.70  1.00 
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 1.40  2.00  3.50
Rs:  0.0
ζ:    0.0   0.5   1.0   1.5
θs:   1      2      4

Table S9. The parameters of structural fingerprints of Cu, set 5
type η Rs

1 radial 0.5 1.0
2 radial 0.7 1.0
3 radial 1.0 1.0
4 radial 1.4 1.0
5 radial 0.14 2.0
6 radial 3.5 2.0
7 radial 1.4 2.5
8 radial 2.0 2.5
9 radial 3.5 3.0
10 radial 0.1 5.0
11 radial 0.14 5.0
12 radial 0.18 5.0
13 radial 1.0 5.0
14 radial 1.4 5.0
15 radial 2.0 5.0

Table S10. The parameters of structural fingerprints of Cu, set 6
type η Rs

1 radial 0.7 0.0
2 radial 0.4 1.0
3 radial 3.5 1.0
4 radial 0.7 2.0
5 radial 2.0 2.0
6 radial 0.03 2.5
7 radial 0.05 4.0
8 radial 0.001 5.

Table S11. The parameters of structural fingerprints of Cu, set 6
type η Rs

1 radial 0.7 0.0
2 radial 0.4 1.0
3 radial 3.5 1.0
4 radial 0.7 2.0
5 radial 2.0 2.0
6 radial 0.03 2.5
7 radial 0.05 4.0
8 radial 0.001 5.

Table S12. The parameters of structural fingerprints of Cu, set 7
type η Rs ζ θs type η Rs ζ θs

1 radial 0.07 0 44 angular 0.03 0 1 1
2 radial 0.1 0 45 angular 0.03 0 1 2
3 radial 0.14 0 46 angular 0.03 0 1 4
4 radial 0.18 0 47 angular 0.03 0 1.5 1
5 radial 0.7 0 48 angular 0.03 0 1.5 2
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6 radial 0.001 2.5 49 angular 0.05 0 0 1
7 radial 0.03 2.5 50 angular 0.05 0 0 2
8 radial 0.07 2.5 51 angular 0.05 0 0 4
9 radial 0.1 2.5 52 angular 0.05 0 0.5 1
10 radial 0.14 2.5 53 angular 0.05 0 0.5 2
11 radial 0.18 2.5 54 angular 0.05 0 0.5 4
12 radial 0.25 2.5 55 angular 0.05 0 1 1
13 radial 0.3 2.5 56 angular 0.05 0 1 2
14 radial 0.4 2.5 57 angular 0.05 0 1 4
15 radial 0.5 2.5 58 angular 0.05 0 1.5 1
16 radial 0.7 2.5 59 angular 0.09 0 0 1
17 radial 1 2.5 60 angular 0.09 0 0 2
18 radial 1.4 2.5 61 angular 0.09 0 0 4
19 radial 3.5 2.5 62 angular 0.09 0 0.5 1
20 radial 0.001 5 63 angular 0.09 0 0.5 2
21 radial 0.07 5 64 angular 0.09 0 0.5 4
22 radial 0.1 5 65 angular 0.09 0 1 1
23 radial 0.14 5 66 angular 0.09 0 1 2
24 radial 0.5 5 67 angular 0.09 0 1 4
25 radial 0.7 5 68 angular 0.09 0 1.5 1
26 radial 2 5 69 angular 0.16 0 0 1
27 angular 0.001 0 0 1 70 angular 0.16 0 0 2
28 angular 0.001 0 0 2 71 angular 0.16 0 0 4
29 angular 0.001 0 0 4 72 angular 0.16 0 0.5 1
30 angular 0.001 0 0.5 1 73 angular 0.16 0 0.5 2
31 angular 0.001 0 0.5 2 74 angular 0.16 0 0.5 4
32 angular 0.001 0 0.5 4 75 angular 0.16 0 1 1
33 angular 0.001 0 1 1 76 angular 0.16 0 1 2
34 angular 0.001 0 1 2 77 angular 0.16 0 1 4
35 angular 0.001 0 1 4 78 angular 0.16 0 1.5 1
36 angular 0.001 0 1.5 1 79 angular 0.3 0 0 1
37 angular 0.001 0 1.5 2 80 angular 0.3 0 0 2
38 angular 0.03 0 0 1 81 angular 0.3 0 0 4
39 angular 0.03 0 0 2 82 angular 0.3 0 0.5 1
40 angular 0.03 0 0 4 83 angular 0.3 0 0.5 2
41 angular 0.03 0 0.5 1 84 angular 0.3 0 0.5 4
42 angular 0.03 0 0.5 2 85 angular 0.3 0 1 4
43 angular 0.03 0 0.5 4 86 angular 0.3 0 1.5 1

Table S13. The parameters of structural fingerprints of Cu, set 8
type η Rs ζ θs

1 radial 0.03 0
2 radial 0.1 0
3 radial 0.25 0
4 radial 1.4 0
5 radial 0.07 2.5
6 radial 0.14 2.5
7 radial 0.18 2.5
8 radial 0.25 2.5
9 angular 0.3 2.5
10 angular 0.5 2.5
11 angular 0.7 2.5
12 angular 0.001 0 0 2
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13 angular 0.001 0 0.5 4
14 angular 0.001 0 1 2
15 angular 0.001 0 1.5 2
16 angular 0.03 0 0 1
17 angular 0.03 0 0 4
18 angular 0.03 0 1 1
19 angular 0.03 0 1 2
20 angular 0.05 0 1.5 2
21 angular 0.05 0 1.5 4
22 angular 0.09 0 0 1
23 angular 0.09 0 0 2
24 angular 0.09 0 0.5 4
25 angular 0.09 0 1.5 1
26 angular 0.16 0 0 4
27 angular 0.16 0 1 4
28 angular 0.16 0 1.5 1
29 angular 0.16 0 1.5 4
30 angular 0.3 0 0 4
31 angular 0.3 0 1.5 2
32 angular 0.3 0 1.5 4

FIG S11. Examples of the fingerprints with different parameter sets. (a) radial part of radial fingerprints, 
exp[-η(r-Rs)2] fc(r), (b) the angular contributions of angular fingerprints 21-ζ(1+cos(θ-θs))ζ.
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