Supporting Information: Lithium ions solvated in helium

M. Rastogi^a, C. Leidlmair^a, L. An der Lan^a, J. Ortiz de Zárate^b, R. Pérez de Tudela^c,
M. Bartolomei^b, M. I. Hernández^b, J. Campos-Martínez^b, T. González-Lezana^b;
J. Hernández-Rojas^d, J. Bretón^d, P. Scheier^a, and M. Gatchell^{a,e*}

^{*a*}Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria

^bInstituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain

 $^c\mathrm{Lehrstuhl}$ für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

^dDepartamento de Física and IUdEA, Universidad de La Laguna, 38205 Tenerife, Spain ^eDepartment of Physics, Stockholm University, 106 91 Stockholm, Sweden

July 17, 2018

^{*}t.gonzalez.lezana@csic.es

^{*}michael.gatchell@uibk.ac.at

Figure 1: (top) Number of He atoms inside a sphere of radius r around the Li⁺ ion in He_nLi⁺ droplets with n = 8, 11, 14 and 17. The first solvation layer around the ionic impurity is formed by 8 He atoms as shown in the above panel with all distributions sharing the area in shadow covering up to $r \sim 3$ Å. Further confirmation is observed in the angular distribution in the bottom panel where the same pattern with the three features for the corresponding He–Li⁺–He angles in the He₂–Li⁺ clusters is found for the n = 11, 14 and 17 cases.