Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information

Phase separation strategy to facilely form fluorescent $[Ag_2]^{2+}/ [Ag_m]^{n+}$ quantum clusters in boro-alumino-silicate multi-phase glasses

Xiaotong Chen,^a Junjie Zhao,^a Xiuxia Xu,^a Gaorong Han,^a Kai Ren,^a Xue Luo,^a Xinwen Sun,^a Xvsheng Qiao,^{a, †} Xianping Fan^a and Guodong Qian^a

^a State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

* Corresponding author. E-mail: qiaoxus@zju.edu.cn; Tel.: +86-571-87951234.

Figure.S1 ⁹F NMR spectra of GZnFSrF, GZnO and GZnOSrO. It evidenced that the F in GZnO and GZnOSrO are all volatilized and there is no fluorine in the glass residue structure.

Figure.S2 Spectra of quantum yield (QY) measurement for sample: (a) GZnFSrF annealed at 510°C for 2h; (b) GZnO annealed at 480°C for 2h and GZnOSrO annealed at 570°C for 2h (c).
CIE chromaticity of precursor glass of GZnFSrF, GZnO and GZnOSrO, the red point represent CIE chromaticity of GZnOSrO annealed at 570°C for 2h, the inset is the corresponding emission spectra.

Figure.S3 SEM observation of the interconnected borate phase separtion in GZnFSrF (a), and tetragonal prismatic ZnAlO₄ phase separtion in GZnO (b) and irregular oxide phase separation in GZnOSrO (c).