Electronic supplementary information

Assignment of photoelectron spectra of intramolecular silicon complexes. 1-vinyl- and 1-phenylsilatranes

Elena F. Belogolova, Evgeniya P. Doronina, and Valery F. Sidorkin*

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences Favorsky, 1, Irkutsk 664033, Russian Federation E-mail: <u>svf@irioch.irk.ru</u>

Table	S1.	Selected	CCSD/6-311G(d,p)	geometrical	parameters	of	the	molecules
XSi(OC	CH ₂ CH	$(1_2)_3 N.^a$						

	X = Vinyl	X = Ph
Si-N	2.499	2.482
Si-C	1.857	1.868
Si-O	1.668	1.668
O-C	1.409	1.409
C-N	1.458	1.458
XSiO	103.1	102.7
OCC	109.5	109.5
CNC	116.6	116.4
CNSi	100.8	101.0
η_e	53	55

^{*a*} Bond lengths are in angstroms, angles are in degrees. The geometric parameters are averaged for three chains.

Atom	54a	53a	52a	51a	50a	49a	48a	47a	46a
Ν	1.03	0.00	0.21	0.04	0.04	0.02	0.01	0.01	0.06
Si	0.06	0.03	0.20	0.06	0.07	0.12	0.09	0.09	0.10
Ο	0.05	0.01	0.18	0.33	0.32	0.29	0.31	0.30	0.34
Cα	0.07	0.00	0.01	0.09	0.10	0.02	0.06	0.05	0.07
C_{β}	0.06	0.00	0.02	0.10	0.10	0.05	0.12	0.12	0.10
$C^1(X)$	0.07	0.94	0.46	0.01	0.02	0.20	0.01	0.02	0.04
$C^2(X)$	0.01	0.96	0.11	0.00	0.01	0.11	0.00	0.00	0.04

Table S2. Mulliken Populations in the Selected MOs of Vinyl-Silatrane^a

^{*a*} HF calculations using the 6-311G(d,p) basis for the CCSD/6-311G(d,p) molecular geometry. Units are electrons; the sum over all atoms is 2.

Atom	67a	66a	65a	64a	63a	62a	61a	60a	59a	58a	57a
N	0.00	0.00	1.00	0.22	0.03	0.04	0.02	0.00	0.01	0.01	0.00
Si	0.02	0.00	0.07	0.21	0.06	0.06	0.10	0.02	0.09	0.07	0.02
0	0.01	0.00	0.05	0.15	0.32	0.33	0.31	0.07	0.29	0.20	0.05
Cα	0.00	0.00	0.07	0.01	0.09	0.09	0.02	0.01	0.06	0.03	0.02
C_{β}	0.00	0.00	0.06	0.02	0.09	0.10	0.05	0.02	0.11	0.08	0.03
$C^1(X)$	0.66	0.01	0.08	0.43	0.00	0.00	0.12	0.21	0.01	0.08	0.26
$C^2(X)$	0.15	0.50	0.01	0.09	0.01	0.01	0.06	0.24	0.01	0.06	0.26
C ³ (X)	0.18	0.48	0.01	0.08	0.02	0.00	0.06	0.17	0.01	0.08	0.28
$C^4(X)$	0.61	0.01	0.00	0.03	0.02	0.00	0.04	0.17	0.01	0.09	0.28
C ⁵ (X)	0.13	0.53	0.01	0.08	0.02	0.00	0.06	0.15	0.01	0.09	0.28
$C^6(X)$	0.21	0.45	0.01	0.10	0.01	0.01	0.07	0.20	0.01	0.10	0.25

Table S3. Mulliken Populations in the Selected MOs of Phenyl-Silatrane^a

^{*a*} HF calculations using the 6-311G(d,p) basis for the CCSD/6-311G(d,p) molecular geometry. Units are electrons; the sum over all atoms is 2.

		X = Vinyl	X = Ph	X = Vinyl	X = Ph	X = Vinyl	X = Ph
N	S	0.18	0.18	0.10	0.11	-0.07	-0.08
	$p_{\rm z}$	0.44	0.43	0.18	0.19	-0.06	-0.07
Si	S	0.07	0.06	-0.11	-0.12	-0.10	-0.09
	p_{z}	-0.06	-0.05	-0.14	-0.14	-0.11	-0.10
	d_{zz}	0.06	0.06	-0.06	-0.06	-0.03	-0.03
С	S	0.08	0.06	-0.14	-0.13	-0.04	-0.02
	$p_{\rm z}$	-0.09	-0.13	0.21	0.21	0.13	0.11
O^1	S	-0.03	-0.04	0.03	0.04	0.02	0.04
	$p_{\rm x}$	0.07	0.03	-0.04	-0.11	-0.04	0.17
	p_{y}	-0.06	-0.09	0.10	0.08	-0.18	-0.11
	$p_{\rm z}$	-0.02	-0.03	0.06	0.09	-0.05	-0.00
O^2	S	-0.04	-0.03	0.04	0.03	0.02	0.02
	$p_{\rm x}$	0.02	-0.09	-0.11	0.12	-0.04	-0.15
	p_{y}	0.09	0.03	-0.08	0.05	-0.18	-0.12
	$p_{\rm z}$	-0.02	-0.02	0.09	0.08	-0.05	-0.04
O ³	S	-0.03	-0.04	0.03	0.04	0.05	0.03
	$p_{\rm x}$	-0.09	0.07	0.13	-0.02	0.20	-0.02
	p_{y}	-0.02	0.06	-0.07	-0.10	0.11	0.21
	p_{z}	-0.03	-0.02	0.10	0.06	-0.03	-0.05

Table S4. HF/6-311G(d,p)//CCSD/6-311G(d,p) orbital coefficients in MO's HV_1 and HV_2 for the 3c-4e XSi \leftarrow N moiety of molecules XSi(OCH₂CH₂)₃N.^{*a*}

^{*a*} The Z axis is directed along the Si \leftarrow N bond from N to Si.

Erre d	,		OVGF					
Exp."		NO	6-311G(d,p)	cc-pVTZ	aug-cc-pVTZ			
8.5	54a	HV_2	8.90	8.94	9.02			
9.3	53a	$\pi_{\rm CC}$	9.31	9.48	9.56			
9.6	52a	HV_1	10.13	10.27	10.37			
10.2	51a 50a	$e(n_{\rm O})$	10.47 10.52	10.60) 10.65)	10.70 10.75			
10.9	49a	$n_{\rm O}+\sigma_{\rm SiC}$	10.85	10.98	11.08			
11.8	$\left.\begin{array}{c}48a\\47a\end{array}\right\}$	$e(\sigma_{ m SiO})$	11.31 11.34	11.42 11.45	11.52 11.54			
MAE			0.32	0.37	0.42			

Table S5. Experimental and OVGF calculated (with Pople's and Dunning's basis sets) vertical ionization energies (eV) for the molecule of 1-vinylsilatrane (**5**).

^a J. B. Peel and D. Wang, J. Chem. Soc., Dalton Trans. 1988, 1963–1967.

Table S6. Experimental and OVGF calculated (with Pople's and Dunning's basis sets) vertical ionization energies (eV) for the molecule of 1-phenylsilatrane (6).

Even a		MO	OVC	θF	
Exp."		MO	6-311G(d,p)	cc-pVTZ	
	67 a 🔪		8.29	8.47	
8.8	66 <i>a)</i>	$e_{lg}(\pi_{\rm Ph})$	8.33)	8.51	
	65a	HV_2	8.96	9.00	
9.9	64a	HV_1	9.93	10.06	
	63 <i>a</i>)	<i>(</i>)	10.49	10.62	
10.4	62 <i>a</i>)	$e(n_{\rm O})$	10.50 🕽	10.63)	
	61a	$n_{ m O}+\sigma_{ m SiC}$	10.66	10.81	
	60a	$\sigma_{Ph}+\sigma_{CH}$	11.18	11.30	
11.2	59 <i>a</i>		11.34	11.30	
	58a)	$e(\sigma_{\rm SiO})$	11.42)	11.45)	
MAE			0.20	0.23	

^a J. B. Peel and D. Wang, J. Chem. Soc., Dalton Trans. 1988, 1963–1967.

Vn	ω	54a	53a	52a	51a	50a	49a	48a	47a	46a
		HV_2	$\pi_{\rm CC}$	HV_1	n _O	n _O	$n_{\rm O} + \sigma_{\rm SiC}$	n _O	n _O	n _O
1	70	0.11	-0.05	0.01	0.00	0.00	-0.10	0.00	-0.01	-0.03
2	82	-0.12	0.06	0.00	-0.01	0.00	0.10	0.00	0.00	0.04
6	192	-0.15	0.06	0.02	0.01	-0.01	0.04	0.01	0.00	0.02
7	194	0.10	-0.04	-0.02	0.02	0.00	-0.02	0.01	-0.01	-0.01
11	328	-0.05	0.02	0.01	-0.02	0.01	0.02	0.01	-0.02	0.00
13	384	-0.05	0.02	0.00	0.03	-0.01	-0.01	0.00	0.02	0.00
16	462	-0.05	-0.04	0.01	0.02	0.03	-0.02	0.02	0.01	0.03
18	564	-0.05	0.02	-0.03	-0.02	-0.02	0.04	-0.02	-0.02	-0.07
22	727	0.06	-0.12	-0.03	0.03	0.03	-0.09	0.03	0.03	0.02
23	769	0.03	-0.06	0.02	0.05	0.05	-0.04	0.05	0.04	0.06
25	792	0.01	-0.02	-0.02	0.06	-0.02	-0.02	0.01	0.02	0.02
28	903	0.07	-0.04	-0.02	0.01	0.00	-0.04	0.03	0.03	0.00
32	1016	0.08	0.00	-0.01	0.02	0.01	0.00	0.00	0.00	0.01
37	1092	-0.07	0.00	-0.02	-0.02	-0.02	0.03	0.00	0.00	-0.04
39	1150	0.00	0.01	0.00	0.05	-0.05	0.01	-0.01	0.00	0.00
40	1175	0.00	0.09	0.04	-0.07	-0.06	0.07	-0.07	-0.07	-0.03
46	1288	0.04	-0.01	0.02	-0.02	-0.02	0.00	0.00	-0.01	-0.07
47	1294	0.01	0.05	0.08	0.01	0.00	0.11	0.00	0.01	0.00
52	1387	0.05	-0.01	0.01	-0.04	-0.04	-0.01	-0.01	-0.01	-0.02
53	1395	-0.03	0.03	0.05	0.00	0.00	0.06	0.05	0.05	0.02
56	1434	0.00	-0.04	0.03	-0.01	-0.01	0.05	-0.01	-0.01	-0.01
59	1485	0.06	-0.01	0.00	-0.02	-0.02	-0.02	0.01	0.01	0.01
63	1670	0.00	-0.17	0.02	0.00	-0.01	0.15	0.00	0.00	-0.01
77	3129	-0.01	-0.02	-0.03	0.00	-0.01	0.10	0.00	-0.01	0.01
Δ		0.74	0.65	0.31	0.42	0.40	0.76	0.37	0.35	0.36

Table S7. OVGF/6-311G(d,p) linear vibronic coupling constants, $k \times 10$ (eV), for nine ionization transitions of 1-vinylsilatrane evaluated with respect to the totally symmetric normal modes, v_n , frequencies, ω (cm⁻¹), and the corresponding vibrational widths, Δ (eV).^{*a*}

 \overline{a} Only modes with |k| > 0.04 are given.

Table S8. OVGF/6-311G(d,p) linear vibronic coupling constants, $k \times 10$ (eV), for nine ionization transitions of 1-phenylsilatrane evaluated with respect to the totally symmetric normal modes, v_n , frequencies, ω (cm⁻¹), and the corresponding vibrational widths, Δ (eV).^{*a*}

Vn	ω	67a	66a	65a	64a	63a	62a	61a	60a	59a
		$\pi_{ m Ph}$	$\pi _{ m Ph}$	HV_2	HV_1	n _O	n _O	$n_{\rm O} + \sigma_{\rm SiC}$	$\sigma_{ m Ph}$	n _O
3	74	-0.06	-0.05	0.15	0.02	0.01	0.01	-0.11	-0.03	-0.05
7	169	-0.07	-0.01	0.12	-0.03	0.01	0.01	0.00	-0.03	-0.03
11	281	-0.01	-0.02	0.05	-0.01	-0.01	-0.01	-0.04	-0.02	-0.02
13	334	-0.01	-0.07	0.13	0.00	0.01	0.01	0.01	-0.05	-0.05
20	497	0.01	0.07	0.02	0.01	-0.03	-0.03	-0.02	0.04	0.04
21	575	-0.01	-0.06	0.06	0.02	0.02	0.02	-0.02	-0.03	-0.04
24	618	0.01	0.07	-0.03	0.00	-0.04	-0.04	-0.01	0.04	0.03
27	724	0.09	0.02	-0.03	0.06	-0.02	-0.02	0.04	-0.01	0.07
29	765	0.06	-0.01	-0.02	0.01	-0.04	-0.05	-0.01	-0.01	0.03
35	904	0.04	0.02	-0.07	0.03	-0.01	-0.01	0.02	0.01	0.03
41	1015	-0.04	-0.04	-0.01	-0.05	-0.01	0.00	-0.02	0.02	-0.09
42	1017	0.00	-0.01	0.07	-0.01	0.02	0.02	-0.01	0.00	-0.01
43	1054	0.00	-0.05	0.00	0.03	0.00	0.00	0.01	-0.01	-0.09
46	1092	0.00	0.00	0.06	0.02	0.02	0.02	-0.03	0.00	0.00
48	1145	-0.03	0.04	0.01	-0.08	0.01	0.03	-0.04	0.00	0.04
51	1174	0.07	0.06	0.00	0.07	-0.06	-0.07	0.03	0.03	0.07
55	1207	0.03	-0.03	0.01	0.03	0.00	0.01	0.02	-0.05	0.00
66	1387	-0.01	0.00	0.05	0.01	-0.04	-0.04	-0.01	-0.01	0.00
67	1395	0.02	0.02	-0.03	0.03	0.00	0.00	0.05	0.03	0.02
73	1486	0.01	0.00	-0.06	-0.01	0.02	0.02	0.01	0.00	0.01
79	1649	0.03	-0.04	-0.01	-0.09	0.00	0.00	-0.09	0.17	0.00
94	3181	0.00	0.00	0.00	0.01	0.00	-0.01	0.01	-0.06	0.00
96	3195	0.02	0.01	0.00	0.00	0.01	0.00	-0.01	-0.07	0.04
Δ		0.44	0.47	0.70	0.42	0.30	0.33	0.46	0.54	0.49

 \overline{a} Only modes with |k| > 0.04 are given.