Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information

Beryllium-Beryllium only double- π bonds in the octahedral cluster of Be₂(μ_2 -X)₄

(X=Li, Cu, BeF)

Xingman Liu^a, Min Zhang^{*a}, Shuang Yu^b, Yun Geng^a, Xingxing Zhang^a, Yihong Ding^{*b} and Zhongmin Su^{*a}

a Institute of Functional Material Chemistry, Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024 (P.R. China).

b Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (P.R. China)

Corresponding Author

Email: mzhang@nenu.edu.cn (M. Zhang)

Email: yhdd@jlu.edu.cn (Y. Ding)

Email: zmsu@nenu.edu.cn (Z. Su)

Table of Contents

SI1 A description of the other simulated molecular structures and the corresponding orbital information for octahedral $Be_2(BeF)_4$ and Be_2Cu_4 shown in **Figure S1** and **S2**.

SI2 The ADNDP, LOL, ELF analysis for octahedral Be₂(BeF)₄ and Be₂Cu₄ shown in Figure S3 and S4.

SI3 The CDA results for octahedral Be₂(BeF)₄ and Be₂Cu₄ shown in Figure S5 and S6.

SI4 The Laplacian plot of the electron density for octahedral Be_2Li_4 and Be_2Cu_4 presented in **Figure S7** and **S8**.

SI5 The AIM analysis for three octahedral Be₂(BeF)₄, Be₂Li₄ and Be₂Cu₄ listed in **Figure S9**.

SI6 The lowest frequency and corresponding Be-Be stretching vibrational modes for Be₂ complexes shown in **Figure S10**.

SI7 The structures data for three octahedral clusters and their other lowest-lying isomers using G3B3 approach, together with their relative energy difference given in **Figure S11**.

SI8 Detailed orbital component analysis results (important Be-Be σ , π , σ^* and π^*) for Be₂Li₄, Be₂Cu₄ and Be₂(BeF)₄ listed in **Table S1-S3**.

SI9 The data on other optimized structures by this universal strategy including Be₂(BeCl)₄ and Be₂Na₄ shown in **Figure S12**.

SI10 Several possible reactions and thermodynamic values for octahedral Be₂Cu₄, Be₂Li₄ and Be₂(BeF)₄ shown as in **Scheme S1**.

SI11 The weight of degenerate double- π bonds configuration under CASSCF(8,8)/6-31G* level for the octahedral Be₂X₄ (X = Li, Cu, BeF) in **Table S4**.

SI12 The detailed structural coordinates.

Figure S1. The global minimum of $Be_2(BeF)_4$ with the D_{4h} symmetry and its important FMOs under CCSD/cc-pVTZ level. It should be noted that the isolated orbitals of F from HOMO-9 to HOMO-2 have been omitted here.

Figure S2. The global minimum of $Be_2(Cu)_4$ with the D_{4h} symmetry and its important FMOs under CCSD/cc-pVTZ/LANL2DZ level. The inner orbital of Cu and Be omitted here.

Figure S3. a) AdNDP orbitals. b) LOL profile. c) ELF profile for Be₂(BeF)₄ did under CCSD/cc-pVTZ level. ON stands for the occupation number.

Figure S4. a) AdNDP orbitals. b) LOL profile. c) ELF profile for Be₂Cu₄ under CCSD/cc-pVTZ/LANL2DZ level. ON stands for the occupation number.

Figure S5. The dominant FMOs correlation diagram in Be₂(BeF)₄ under CCSD/cc-pVTZ level between vertex-Be₂ and (BeF)₄ fragments.

Figure S6. The dominant FMOs correlation diagram under CCSD/cc-pVTZ/LANL2DZ level in Be_2Cu_4 between Be_2 and Cu_4 fragments.

Figure S7. Laplacian plot of the electron density $\nabla^2 \rho(r)$ of Be₂Li₄ under CCSD/cc-pVTZ level in different perspectives. **a)** The plane of the Li₄ ring from the vertical view. **b)** Front view that contains two vertex-Be atoms and two opposing Li atoms bisecting the plane of the Li₄ ring. The orange lines including corresponding region indicate the areas of charge concentration ($\nabla^2 \rho(r)$ <0) while blue lines and corresponding region show the areas of charge depletion ($\nabla^2 \rho(r)$ >0).

Figure S8. Laplacian plot of the electron density $\nabla^2 \rho(r)$ of Be₂Cu₄ under CCSD/cc-pVTZ/LANL2DZ level in different perspectives. **a)** The plane of the Cu₄ ring from the vertical view. **b)** Front view that contains two vertex-Be atoms and two opposing Cu atoms bisecting the plane of the Cu₄ ring. The orange lines including corresponding region indicate the areas of charge concentration ($\nabla^2 \rho(r)$ <0) while blue lines and corresponding region show the areas of charge depletion ($\nabla^2 \rho(r)$ >0).

Figure S9. AIM results under the same level as their optimization progress for **a**) $Be_2(BeF)_4$, **b**) Be_2Li_4 and **c**) Be_2Cu_4 . It is clear that there no BCP along Be-Be axle meaning there no direct σ bonding interaction between two Be atom. Here the orange dots are bond critical points(BCP), yellow dots are ring critical points(RCP), and the two green dots are the cage critical points(CCP). The purple dots in $Be_2(BeF)_4$ and Be_2Li_4 including two parts. In addition to the nucleus critical points(NCP), the "Non-nuclesr-attractor(NNA)" is marked pink color.(Please refer to *Organometallics* **2013**, 32, 1060–1066; *Inorg. Chem.* **2000**, 39, 2360-2366 and *Angew. Chem. Int. Ed.* **1984**, 23 627–628) There exist four NNAs in both in $Be_2(BeF)_4$ and Be_2Li_4 separately. The orange solid lines represent the path connected the BCP and NCP and the green solid lines connected RCP and CCP. Indicators in the graph: *Covalent* indicates the covalent bond, *Dative* indicates the dative bond, *Metal-Metal* means the metallic bond.

Figure S10. a) The lowest frequency and the corresponding vibrational modes. b) The normal modes of Be-Be stretching vibrational frequency in Be₂-containing complexes under the same level as their optimization progress. (unit: cm⁻¹.)

Figure S11. The lowest-lying isomers of Be_2Li_4 , $Be_2(BeF)_4$ and Be_2Cu_4 shortened as **1**, **2** and **3** respectively with energy in kcal/mol using G3B3 approach (please refer to *J. Chem. Phys.* 109, **1998**, 7764). **1d**, **2h** and **3e** represent the lowest triplet isomers on the PES, respectively. It is noteworthy that many of the structures will be transformed to the octahedral conformation after the re-optimization under higher basis set level, so some transformed isomers are omitted here.

Table S1. The orbital composition of Be_2Li_4 under CCSD/cc-pVTZ level. The molecular orbitals originated from the inner shell AOs are omitted. The coefficient of each orbital is given by the contribution from the Be_2 and Li_4 fragments. The same way for $Be_2Cu_4 Be_2(BeF)_4$.

Table S2. The orbital composition of Be_2Cu_4 under CCSD/cc-pVTZ/LANL2DZ level

	ccupied molecular orbital Unoccupied molecular orbital		
σ	2×π	σ*	2×π*
-12.31	-6.96	-5.84	2.98
Cu ₄ ©4s~21.8% Cu ₄ ©3dz ^{2~} 35.6% Be ₂ ©2s~33.4%	Cu ₄ ©4s~63.5% Cu ₄ ©4p _{x,y} ~9.2% Cu ₄ ©dx ² -y ² ~7.8% Cu ₄ ©3s~7.1% Pa @2p ~10.5%	$Cu_4 @4p_2 \sim 10.7\%$ $Cu_4 @d_{xy} \sim 5.0\%$ $Cu_4 @d_{yz} \sim 5.0\%$ $Be_2 @2s \sim 53.2\%$ $Be_2 @2p \sim 10.9\%$	Cu ₄ ©4p ₂ ~46.4% Be ₂ ©2p _{x,y} ~52.7%
	σ -12.31 Cu ₄ ©4s~21.8% Cu ₄ ©3dz ^{2~} 35.6% Be ₂ ©2s~33.4%	σ $2×πi$ i i i i i i i i i	σ $2×π$ σ*

Table S3. The orbital composition of Be₂(BeF)₄ under CCSD/cc-pVTZ level.

Be ₂ (BeF) ₄	occu	occupied molecular orbital		
	σ	2×π	σ*	2×π*
Diagram				
Energy/eV	-17.39 Be₄©2s~16.6%	-11.52	-8.43	-0.18
Component	Be₄©2p _{x,y} ~7.5% Be₄©2pz~5.6% F₄©2p _{x,y} ~6.8% Be₂©2s~56.7%	Be ₄ ©2s~42.1% Be ₄ ©2p _{x,y} ~19.7% Be ₂ ©2p _{x,y} ~24.9%	Be ₂ ©2s~92.3%	Be ₄ ©2p _z ~8.8% Be ₂ ©2p _{x,y} ~88.2%

Be-Be-1 = 1.891Å (WBI=1.113) Be-Be-2 = 2.108Å (WBI=0.477) Be-Be-3 = 2.663Å (WBI=0.136) Be-Cl = 1.807Å (WBI=1.039)

NPA(vertex-Be) = -0.27 Lowest frequency= 32.63 cm⁻¹ Be-Be stretching vibration frequency= 698.15 cm⁻¹

Figure S12. The data on other two optimized structures by this universal strategy including $Be_2(BeCI)_4$ and Be_2Na_4 under B3LYP/cc-pVTZ level. The same conclusion can be drawn, since the same trend is for $Be_2(BeF)_4$, Be_2Cu_4 , Be_2Li_4 under the same level. The frequency analysis is achieved also under B3LYP/cc-pVTZ level. They are all the lowest-energy structure under this level. The most-important bond-lengths and WBIs for $Be_2(BeCI)_4$ and Be_2Na_4 are also shown under CCSD/cc-pVTZ level.

SI10

Scheme S1. Several possible reactions and thermodynamic values for the generation of octahedral Be₂Li₄, Be₂Cu₄ and Be₂(BeF)₄ using CCSD method. The LANL2DZ basis set for Cu, cc-pVTZ for Be, Li and F. The Gibbs free energy differences (Δ G) of all reactions are always negative, so in thermodynamics, Be₂Cu₄, Be₂Li₄ and Be₂(BeF)₄ are stable and can most likely be obtained by some reactions.

SI11

The octahedral Be₂X₄ (X = Li, Cu, BeF) structures is optimized and calculated at the CASSCF(8,8)/6-31G* level. These active orbitals are including 4 σ and 4 π orbitals, in which 6 orbitals (2 σ + 4 π) are shown in SI8. Since the 2 σ orbitals in SI8 are occupied, we introduced LUMO (σ orbital) and the corresponding σ^* orbital in the active space.

As expected, the CASSCF(8,8) results are consistent with the CCSD results. All the dominant configurations in octahedral Be_2X_4 (X = Li, Cu, BeF) are the degenerate double- π bonds state, and the corresponding weights are all over 83%. It is suggested that there are no multi-reference configurations in nature.

Table S4. The weight of degenerate double- π bonds configuration under CASSCF(8,8)/6-31G* level for the global minimums.

	Be ₂ Li ₄	Be ₂ Cu ₄	Be ₂ (BeF) ₄
Basis set	6-31G*	6-31G*/LANL2DZ	6-31G*
Weight (%)	83.08	86.27	86.17

SI12

Coordinates and energies (unit: a.u.) of Be₂Li₄, Be₂(BeF)₄, Be₂Cu₄, Be₂(BeCl)₄, Be₂Na₄, Be₂, Be₂F₂, Be₂(CO)₄, Be₂(NHCs)₂.

Methods and Basis Sets are shown in brackets.

Par	t-A		
Be ₂ (CC	Li₄ (octahedron) SD/cc-pVTZ)		
E= -	0 0000000	1 1 2020210	0 0000000
	0.00000000	-2.23938318	0.00000000
	2 22028218	0.0000000	0.00000000
	-7 73938318	0.00000000	0.000000000
Be	0.0000000	0.00000000	-1 02046995
Be	0.00000000	0.00000000	1.02046995
Be ₂	Cu ₄(octahedron)		
(CŌ	SD/LANL2DZ/cc-p	VTZ)	
É= -	809.2443965		
Cu	0.00000000	1.87019576	0.00000000
Cu	0.00000000	-1.87019576	6 0.00000000
Cu	-1.87019576	0.00000000	0.00000000
Cu	1.8/0195/6	0.00000000	0.00000000
ве	0.00000000	0.00000000	
ье	0.00000000	0.00000000	1.10201255
Be ₂	(BeF) ₄ (octahedror	n)	
(CC.	186 0388055		
Ro	00000000000	0 0000000	-0.966/1617
Be	0.00000000	0.00000000	0 96641617
Be	-1.91449602	0.00000000	0.00000000
Be	0.00000000	-1.91449602	0.00000000
Be	0.00000000	1.91449602	0.00000000
Be	1.91449602	0.00000000	0.00000000
F	3.28754771	0.00000000	0.00000000
F	0.00000000	-3.28754771	0.00000000
F	0.00000000	3.28754771	0.00000000
F	-3.28754771	0.00000000	0.00000000

Be₂Na₄(octahedron, shown as Figure S12) (B3LYP/cc-pVTZ)

'8.6918297		
-0.00100181	-0.00042887	-1.06244913
0.00040200	-0.0012882	1.05280627
1.81649517	-1.81503023	-0.00054721
1.81489523	1.81529882	0.00099420
-1.81472134	1.81593194	-0.00069130
-1.81688527	-1.81524841	0.00178317
	8.6918297 -0.00100181 0.00040200 1.81649517 1.81489523 -1.81472134 -1.81688527	'8.6918297 -0.00100181 -0.00042887 0.00040200 -0.0012882 1.81649517 -1.81503023 1.81489523 1.81529882 -1.81472134 1.81593194 -1.81688527 -1.81524841

Be₂(BeCl)₄(octahedron, shown as Figure S12)

(B3L	.YP/cc-pVTZ)		
É=-1	929.7278250		
Be	1.33140015	1.33106980	-0.00213893
Be	-1.33130294	1.33179229	-0.00217000
Be	1.33168108	-1.33138681	-0.0022735
Be	-0.00037739	-0.00032762	-0.94543804
Be	-1.33200648	-1.33168635	-0.00173043
Be	-0.00019332	-0.00021839	0.94519316
Cl	2.60932212	2.60850134	-0.00045929
Cl	2.60942136	-2.60898419	0.00040036
Cl	-2.60990641	-2.60911149	-0.00037425
Cl	-2.60872216	2.60971043	0.00042100

Part-B

The lowest-lying isomers coordinates of Be₂Li₄, Be₂(BeF)₄ and Be₂Cu₄ respectively using G3B3 approach.

Be₂Li₄ (B3LYP/6-31g*)

1a

	00040504
3 1.51975824 -0.0 5 1.6183457 -0.00	00310694
9 -1.51795305 -0.0	00488208
15 0.00052327 1.	.01301859
21 0.00058569 -1	00493650
1 -1.01855580 -0.0	00233397
2 24 22 44 4	00045767
8 2.3133411 U	0.107/2660
86 0.18523871	-1.08406589
8 0.00842115	1.85489343
52 -1.49944636 -	-0.03193017
8 -0.28631827 -	0.19740344
83 3.03301595	0.00000000
	0.00000000
20 _3 25027558 (0.00000000
-1.53923148	0.00000000
391 0.43595310	0.00000000
0 1.57777300 0.02	2809300
0 -1.60175400 -0.02	2921800
0 0.07374500 -0.9	3869300
	3020800
0.0234100 0.02	4028500
83 3.03301595 0 63 -0.30441158 0 070 1.11301659 0 20 -3.25027558 0 079 -1.53923148 0 391 0.43595310 0 0 -1.60175400 -0.02 0 -1.57766800 -0.03 0 1.577766800 -0.03 0 1.60254100 0.02 00 -0.07441400 0.9	0.00000000 0.00000000 0.00000000 0.000000

Be₂(BeF)₄ (B3LYP/6-31g*)

2a

E=-4	488.1742492		
Be Be Be	$\begin{array}{c} 1.33028100 \\ -1.33174400 \\ 1.33222200 \end{array}$	1.33156300 1.33061200 -1.33009700	-0.00095800 -0.00125300 -0.00168400
Be Be Be	-0.00026300 -1.33075800 -0.00019100	-0.00010200 -1.33207200 -0.00034500	-0.96070200 -0.0011700 0.96325100
F F	-2.30671200 -2.30861900	-2.30892400 2.30655700	-0.00066600 0.00088600
F F	2.30927800 2.30625500	-2.3058600 2.30842200	0.00035200 0.00054700
2b	188 1616517		
Be	2.15101100	0.45774200	-0.00002900
Ве	-1.04308800	-1.28823300	-0.00213600
Be	1.04318200	-1.28858200	0.00134700
Be	-2.15131600	0.45744300	0.00034400
Be Ro	-0.00065500	0.25993900	-0.96142300
F	-2.53387400	-1.17706700	-0.00097700
F	3.14982100	1.43089400	-0.00097900
F	-3.14970000	1.43102900	0.00079900
F	2.53382800	-1.17699400	0.00095000
ΖC F=-4	188 1618696		
Бe	-0.02364800	1.49391200	-0.24348000
Be	-1.86848000	-1.25037600	-0.25900500
Be	0.00972700	-0.15495200	1.10260000
Ве	1.90339800	-1.21000700	-0.26330100
Be	0.01066300	-0.63362100	-0.98382700
F	3.283630000	-1.15783900	-0.19419800
F	-0.04410100	2.74262200	-0.85171500
F	-3.24938600	-1.22225000	-0.19192200
7	-0.01584400	1.30897700	1.39109100
2a E=-4	488.1580211		
Be	-3.06008800	-0.0074700	-0.00074600
Be	3.05968500	0.00867700	-0.00068800
ве Ве	-1.00669300	-0.00499200 -1 95617300	-0.00064700
Be	1.00617500	0.00487600	0.00098200
Ве	-0.0101800	1.95658200	0.00101200
F	-0.01445300	3.32998100	0.00204200
F	-4.434/6500	-0.010/3900	-0.00200400
F	4 43436800	-3.32957900	-0.00248100
2.	113130000	0.00500500	0.00210700
ze F=-/	188 1456297		
Be	-3.4930200	-1.61653700	0.00000000
Be	-1.75759100	-0.50804200	0.00000000
Be	3.67483100	2.68641100	0.00000000
Re	U.20866400	-1.50523/00 1 71025000	0.00000000
Be	0,0000000	0.69725600	0.00000000
F	1.03063900	-2.61034500	0.00000000
F	-4.6165200	-2.41012500	0.00000000

F F	-1.50617200 4.88330100	1.02710700 3.34264800	0.00000000000000000000000000000000000
2f E=-48 Be Be Be Be F F F F	38.1452879 2.58630800 -1.51090100 0.37017800 -3.37972300 -1.51095200 -1.5627800 1.50846600 1.51377500 -4.76783700 3.97131500	0.00111100 -0.97233500 -0.00567900 -0.00294700 1.01911600 -0.04608500 1.11753200 -1.12100100 0.00228500 0.00421500	-0.01375100 -0.57450800 0.08727400 -0.01181100 -0.49633800 1.17197900 0.04143500 0.04016600 -0.06485900 -0.08911700
2g E=-48 Be Be Be Be F F F	38.1430693 3.2134700 1.11895900 5.29874400 -3.21346400 -5.29873900 -1.1189500 -6.67495100 0.00020400 6.67495700 -0.00021900	$\begin{array}{c} -0.00030700\\ -0.00059500\\ -0.00001100\\ 0.00026500\\ 0.00017700\\ 0.00037500\\ 0.00004700\\ 1.11021900\\ 0.00023800\\ -1.11046200 \end{array}$	0.00007200 0.00002600 -0.00002800 -0.00004200 -0.00011100 0.00011700 -0.00006300 0.00007100 -0.00006300
2h E=-48 Be Be Be Be F F F F	38.1316917 1.95240069 -0.00030162 -2.46631929 1.51588644 3.62381065 -0.09142952 -1.59941195 -1.52969264 4.96567548 -3.85170122	1.63874948 1.15042956 -0.13160316 -0.26010853 0.23398269 -1.43503588 -1.4389777 1.10034487 -0.08534722 -0.10811010	0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Be₂Cu₄(B3LYP/6-31g*)

3a

E=-65	590.6748090		
Be	-0.00050500	-0.00063200	1.20944900
Cu	-1.07266600	1.23486900	-0.00803100
Cu	1.23529400	1.07244400	0.00806300
Cu	-1.23501600	-1.07228100	0.00802300
Be	-0.00036900	-0.00016000	-1.20942200
Cu	1.07250900	-1.23492300	-0.00805900

3b

590.6543950		
0.00090200	1.07938000	1.23141400
-0.00257700	1.14669600	-0.73632600
1.56310300	0.00000900	0.56664600
-1.56074900	-0.00185900	0.56911500
-0.00017600	-1.14444800	-0.73886000
0.00199200	-1.08226600	1.22941500
	590.6543950 0.00090200 -0.00257700 1.56310300 -1.56074900 -0.00017600 0.00199200	590.65439500.000902001.07938000-0.002577001.146696001.563103000.00000900-1.56074900-0.00185900-0.00017600-1.144448000.00199200-1.08226600

3c E=-6590.6496110

Be	0.14897600	0.02671800	-1.12755600
Be	0.90731300	1.37471600	0.42116000
Cu	-1.01705800	1.27359300	-0.06110900
Cu	2.00257700	-0.06417300	-0.45558300
Cu	0.24832300	-0.42010100	1.02457200
Cu	-1.37953600	-0.98262100	-0.41044600

3d

E=-6	590.6366280		
Cu	-1.86843000	-0.00035900	-0.32367400
Be	-1.01256400	0.00026100	1.45508300
Cu	0.00004400	-1.20275100	0.12317600
Be	1.01259000	0.00062000	1.45503800
Cu	1.86840600	-0.00034300	-0.32367900
Cu	-0.00002300	1.20333200	0.12278100

3e

17
36
01
99
18
32

Part-C (Other related molecular structural coordinates)

Be₂ (CCS E=-2 Be Be	5D(T)/cc-pVTZ) 9.2386696 0.00000000 0.00000000	0.00000000 0 0.00000000 2	0.00000000 2.53550897
Be₂ F (CCS E=-2 Be Be F F	2 5D/cc-pVTZ) 28.3959601 -0.7123828347 1.3371034147 2.7079248986 -2.0832043186	7 1.5341614 1.53416147 1.53416147 1.53416147 1.53416147	7 0.00000000 7 0.00000000 0.0000000 0.00000000
Be₂((CCS) E=-4 Be C C C C C C O O O O O	CO) ₄ 5D/cc-pVTZ) 80.2805796 -0.00000265 -0.00000317 1.44329392 -1.44329504 1.44329295 -1.44329601 2.47549134 -2.47549001 -2.47549084 2.47549052	-0.96126575 0.96126575 -1.83424482 -1.83425206 1.83424556 1.83425132 -2.30583733 -2.30584979 2.30584936 2.30583776	0.00000000000000000000000000000000000
Be₂((B3L E=-6 Be Be C N N	NHCs)₂ .YP/cc-pVTZ) 39.0586516 0.97118156 -0.97118177 2.65762158 3.50872301 3.50875062	-0.00004657 0.00004377 -0.00002236 1.08358220 -1.08360475	7 -0.00003107 8 -0.00003162 0.00003710 0.00035158 -0.00034306

С	4.82864131	0.675998294	0.00044329
С	4.82865836	-0.67598645	-0.00030322
С	-2.65762179	0.000021478	0.00003373
N	-3.50872455	-1.08358199	0.00035020
N	-3.50874944	1.08360492	-0.00034433
С	-4.82864233	-0.67599643	0.00043919
С	-4.82865766	0.67598831	-0.00030903
С	-3.03652342	2.44739201	-0.00073999
Н	-2.42559021	2.63730918	0.885815274
Н	-2.42481309	2.63644448	-0.88694101
Н	-3.88486285	3.12770779	-0.00145285
С	-3.03646705	-2.44735817	0.00061464
Н	-2.42557217	-2.63719958	-0.88598388
Н	-2.42471035	-2.63645904	0.88677288
Н	-3.88479048	-3.12769378	0.00131896
С	3.03652630	-2.44739244	-0.00074251
Н	2.42559204	-2.63731201	0.88581152
Н	2.42481750	-2.63644402	-0.88694479
Н	3.88486660	-3.12770716	-0.00145545
С	3.03646377	2.44735778	0.00061299
Н	2.42556837	2.63719646	-0.88598578
Н	2.42470710	2.63645983	0.88677100
Н	3.88478634	3.12769448	0.00131546
Н	5.64631662	1.37297322	0.00079850
Н	5.64635143	-1.37294051	-0.00063101
Н	-5.64634985	1.37294338	-0.00063818
Н	-5.64631851	-1.37297032	0.000794481