## Potential dependent capacitance of [EMIM][TFSI], [N<sub>1114</sub>][TFSI] and [PYR<sub>13</sub>][TFSI] ionic liquids

Jeffrey M. Klein, Evio Panichi, and Burcu Gurkan \*

Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA

**Keywords:** Differential capacitance, electrochemical impedance spectroscopy, electrodeelectrolyte interface, electrical double layer, complex capacitance

## **Electronic Supporting Information**

**Mean Field Theory Fit:** The fits were performed in Origin 2017.  $\alpha$ ,  $\gamma^+$ ,  $\gamma^-$ , and C<sub>D</sub> were the fit parameters. The Levenberg Marquardt iteration method was used for a maximum of 500 iterations or a reduced chi square value of 10<sup>-15</sup>.

**Description of notation:** The notation for **Figures S.1-6** follow this trend: Potentials closest to PZC are indicated by open squares followed by open circles, open triangles, and most positive/negative potential given by the black open diamond. Within the shape scheme the color scheme (from closest to PZC to furthest) is black, red, blue, magenta, purple, burgundy. The potentials are all given explicitly in **Figures S.2, S.4** and **S.6** for [EMIM][TFSI],[PYR<sub>13</sub>][TFSI], and [N<sub>1114</sub>][TFSI] respectively, and the symbol notation is consistent allowing for direct identification of the potentials in the other graphs.

**Table S.1.** Anodic and cathodic limits of the dried ionic liquids vs.  $Fc|Fc^+$  measured at a cutoff current of 0.23 mA/cm<sup>2</sup>, the respective electrochemical windows (EW), and the EWs reported in the literature. The water content of the 'dry' ILs are given in Table 1 of the manuscript.

| Ionic Liquid               | Anodic Limit | Cathodic Limit | Measured EW | Reported EW      |
|----------------------------|--------------|----------------|-------------|------------------|
| [EMIM][TFSI]               | 1.54         | -2.76          | 4.3         | 4.3 <sup>1</sup> |
| [PYR <sub>13</sub> ][TFSI] | 2.40         | -2.70          | 5.1         | 5.3 <sup>2</sup> |
| [N <sub>1114</sub> ][TFSI] | 2.46         | -3.24          | 5.7         | 5 3              |



**Figure S.1**: Cyclic voltammetry of 2 mM Fc in acetonitrile containing 0.1 M TEAP. Used for the determination of the electrochemically active surface area of the glassy carbon working electrode



**Figure S.2** Complex impedance (A and C) and complex capacitance (B and D) representations for [EMIM][TFSI] over the positive (A and B) and negative (C and D) potentials. Inset shows the equivalent circuit fits.



**Figure S.3** Complex capacitance with respect to frequency for [EMIM][TFSI] at all potentials. The vertical lines indicate the frequency range used for the equivalent circuit fit. Y axis is Complex capacitance, but all values have been offset to show trends in the curvature. Reported potentials are with respect to the Ag quasi reference.  $Fc|Fc^+$  redox peak occurred at 0.065 V vs Ag wire in [EMIM][TFSI].



**Figure S.4** Complex impedance (A and C) and complex capacitance (B and D) representations for  $[PYR_{13}][TFSI]$  over the positive (A and B) and negative (C and D) potentials.



**Figure S.5** Complex capacitance with respect to frequency for  $[PYR_{13}][TFSI]$  at all potentials. The vertical lines indicate the frequency range used for the equivalent circuit fit. Y axis is complex capacitance, but all values have been offset to show trends in the curvature. Reported potentials are with respect to Ag quasi reference. Fc|Fc<sup>+</sup> redox peak occurred at 0.30 V vs Ag in  $[Pyr_{13}][TFSI]$ .



**Figure S.6** Complex impedance (A and C) and complex capacitance (B and D) representations for  $[N_{1114}]$ [TFSI] over the positive (A and B) and negative (C and D) potentials.



**Figure S.7** Complex capacitance with respect to frequency for  $[N_{1114}]$ [TFSI] at all potentials. The vertical lines indicate the frequency range used for the equivalent circuit fit. Y axis is complex capacitance, but all values have been offset to show trends in the curvature. Reported potentials are with respect to Ag quasi reference. Fc|Fc<sup>+</sup> redox peak occurred at 0.24 V vs Ag in  $[N_{1114}]$ [TFSI].

| Ionic Liquid               | Potential (V) | R (Ohm) | $Q(F.s^{(a-1)})$ | a      | Chi Squared |
|----------------------------|---------------|---------|------------------|--------|-------------|
| [N <sub>1114</sub> ][TFSI] | -0.1257       | 838.5   | 4.82E-07         | 0.9134 | 0.01439     |
|                            | -0.0851       | 844.1   | 4.82E-07         | 0.9131 | 0.01422     |
|                            | 0.0649        | 839.8   | 6.22E-07         | 0.8973 | 0.01281     |
|                            | 0.2149        | 840.1   | 6.94E-07         | 0.8916 | 0.01578     |
|                            | 0.3649        | 839.9   | 7.89E-07         | 0.8834 | 0.01246     |
|                            | 0.5149        | 843     | 8.73E-07         | 0.8805 | 0.01093     |
|                            | 0.6649        | 838.8   | 1.01E-06         | 0.874  | 0.00878     |
|                            | 0.8149        | 841.4   | 1.18E-06         | 0.8667 | 0.01033     |
|                            | 0.9649        | 840.2   | 1.34E-06         | 0.8619 | 0.01025     |
|                            | 1.1649        | 839     | 1.58E-06         | 0.8529 | 0.01078     |
|                            | 1.3649        | 836.8   | 1.73E-06         | 0.8477 | 0.0146      |
|                            | 1.5649        | 836.7   | 1.69E-06         | 0.846  | 0.01052     |
|                            | 1.7649        | 838.7   | 1.30E-06         | 0.8567 | 0.01021     |
|                            | 1.9649        | 841.6   | 9.33E-07         | 0.8712 | 0.01272     |
|                            | 2.1649        | 843.7   | 6.36E-07         | 0.8915 | 0.01299     |
|                            | 2.2649        | 840.8   | 4.76E-07         | 0.9053 | 0.01398     |
|                            | 2.3649        | 841     | 4.02E-07         | 0.9073 | 0.01193     |
|                            | 2.4149        | 835.8   | 3.26E-07         | 0.9177 | 0.01366     |
|                            | 2.4649        | 834     | 2.92E-07         | 0.9183 | 0.0132      |
|                            | 0.0141        | 644.9   | 4.65E-07         | 0.9018 | 0.02214     |
|                            | -0.2351       | 643.3   | 5.36E-07         | 0.8916 | 0.01986     |
|                            | -0.4351       | 642.9   | 5.75E-07         | 0.8907 | 0.02191     |
|                            | -0.6351       | 642.6   | 6.07E-07         | 0.891  | 0.02412     |
|                            | -0.8351       | 645.1   | 6.50E-07         | 0.8902 | 0.021       |
|                            | -1.0351       | 646.3   | 7.39E-07         | 0.8819 | 0.0198      |
|                            | -1.2351       | 650.2   | 9.02E-07         | 0.8774 | 0.0218      |
|                            | -1.4351       | 651     | 1.07E-06         | 0.8768 | 0.02477     |
|                            | -1.6351       | 651.8   | 1.23E-06         | 0.8775 | 0.0192      |
|                            | -1.8351       | 649.7   | 1.40E-06         | 0.878  | 0.02019     |
|                            | -2.0351       | 647.5   | 1.69E-06         | 0.8665 | 0.01549     |
|                            | -2.2351       | 645.5   | 2.11E-06         | 0.8448 | 0.00978     |
|                            | -2.4351       | 649.5   | 2.04E-06         | 0.8553 | 0.01577     |
|                            | -2.6351       | 642.9   | 2.62E-06         | 0.8183 | 0.00531     |
|                            | -2.8351       | 646.5   | 1.76E-06         | 0.8287 | 0.00987     |
|                            | -3.0351       | 646.4   | 1.15E-06         | 0.8394 | 0.00831     |

**Table S.2** Equivalent circuit fit parameters for the resistor- constant phase element (RQ) fit for  $[N_{1114}]$ [TFSI] at each measured potential (with respect to Fc|Fc<sup>+</sup>).

|  | -3.1351 | 646   | 9.03E-07 | 0.8464 | 0.0078  |
|--|---------|-------|----------|--------|---------|
|  | -3.1851 | 645.9 | 8.06E-07 | 0.8482 | 0.01141 |
|  | -3.2351 | 641.9 | 8.72E-07 | 0.8312 | 0.0111  |

**Table S.3** Equivalent circuit fit parameters for the resistor- constant phase element (RQ) fit for  $[PYR_{13}][TFSI]$  at each measured potential (with respect to Fc|Fc<sup>+</sup>).

| Ionic Liquid               | Potential (V) | R (Ohm) | $Q(F.s^{(a-1)})$ | a      | Chi Squared |
|----------------------------|---------------|---------|------------------|--------|-------------|
| [PYR <sub>13</sub> ][TFSI] | -0.17875      | 414     | 1.17E-06         | 0.9302 | 0.0201      |
|                            | -0.30255      | 413     | 1.21E-06         | 0.9303 | 0.0202      |
|                            | -0.45255      | 411     | 1.46E-06         | 0.9174 | 0.01605     |
|                            | -0.60255      | 409     | 1.67E-06         | 0.9114 | 0.01166     |
|                            | -0.75255      | 407     | 2.01E-06         | 0.9088 | 0.01364     |
|                            | -0.90255      | 408     | 2.23E-06         | 0.9118 | 0.01723     |
|                            | -1.05255      | 407     | 2.35E-06         | 0.9126 | 0.02049     |
|                            | -1.20255      | 407     | 2.43E-06         | 0.9132 | 0.01985     |
|                            | -1.35255      | 407     | 2.45E-06         | 0.9172 | 0.01794     |
|                            | -1.50255      | 407     | 2.50E-06         | 0.9202 | 0.02097     |
|                            | -1.65255      | 407     | 2.50E-06         | 0.9211 | 0.01679     |
|                            | -1.80255      | 407     | 2.26E-06         | 0.9231 | 0.01616     |
|                            | -1.95255      | 408     | 2.01E-06         | 0.919  | 0.01787     |
|                            | -2.10255      | 408     | 1.73E-06         | 0.9167 | 0.01626     |
|                            | -2.25255      | 410     | 1.44E-06         | 0.9125 | 0.01307     |
|                            | -2.30255      | 410     | 1.21E-06         | 0.9142 | 0.01347     |
|                            | -2.40255      | 4.10    | 1.11E-06         | 0.9119 | 0.01045     |
|                            | -2.50255      | 4.09    | 1.04E-06         | 0.9095 | 0.01062     |
|                            | -2.55255      | 4.10    | 9.26E-07         | 0.914  | 0.01187     |
|                            | -0.22755      | 4.18    | 1.30E-06         | 0.9321 | 0.02267     |
|                            | -0.20255      | 419     | 1.29E-06         | 0.9352 | 0.02617     |
|                            | -0.10255      | 419     | 1.52E-06         | 0.934  | 0.02834     |
|                            | -0.00255      | 419     | 1.69E-06         | 0.9344 | 0.03134     |
|                            | 0.09745       | 416     | 1.87E-06         | 0.9316 | 0.02935     |
|                            | 0.19745       | 416     | 2.06E-06         | 0.9266 | 0.02392     |
|                            | 0.44745       | 414     | 2.59E-06         | 0.9171 | 0.03074     |
|                            | 0.59745       | 413     | 2.94E-06         | 0.9171 | 0.01772     |
|                            | 0.74745       | 412     | 3.25E-06         | 0.9202 | 0.01679     |
|                            | 0.89745       | 414     | 3.53E-06         | 0.9238 | 0.02434     |
|                            | 0.99745       | 413     | 3.76E-06         | 0.9222 | 0.02037     |
|                            | 1.09745       | 413     | 3.94E-06         | 0.9215 | 0.02366     |

| 1.19745 | 415   | 3.98E-06 | 0.9224 | 0.01994 |
|---------|-------|----------|--------|---------|
| 1.29745 | 413.8 | 4.07E-06 | 0.9199 | 0.02009 |
| 1.39745 | 413.9 | 3.95E-06 | 0.9195 | 0.0218  |
| 1.49745 | 414   | 3.68E-06 | 0.9165 | 0.02456 |
| 1.59745 | 415.4 | 3.00E-06 | 0.9134 | 0.01582 |
| 1.64745 | 412.8 | 2.48E-06 | 0.9127 | 0.01908 |
| 1.69745 | 416   | 2.15E-06 | 0.9164 | 0.01643 |

**Table S.4** Equivalent circuit fit parameters for the resistor- constant phase element (RQ) fit for [EMIM][TFSI] at each measured potential (with respect to  $Fc|Fc^+$ ).

| Ionic Liquid | Potential (V) | R (Ohm) | $Q(F.s^{(a-1)})$ | a      | Chi Squared |
|--------------|---------------|---------|------------------|--------|-------------|
| [EMIM][TFSI] | -0.02443      | 182.3   | 2.17E-06         | 0.9254 | 0.012       |
|              | 0.03515       | 182.4   | 2.24E-06         | 0.9246 | 0.01186     |
|              | 0.13515       | 182     | 2.48E-06         | 0.921  | 0.01075     |
|              | 0.23515       | 182.3   | 2.69E-06         | 0.9202 | 0.0139      |
|              | 0.33515       | 181.8   | 2.86E-06         | 0.9204 | 0.01193     |
|              | 0.43515       | 181.4   | 3.00E-06         | 0.9208 | 0.01251     |
|              | 0.53515       | 181.6   | 3.15E-06         | 0.9191 | 0.01184     |
|              | 0.63515       | 181.1   | 3.29E-06         | 0.9175 | 0.01102     |
|              | 0.73515       | 180.9   | 3.38E-06         | 0.9169 | 0.0102      |
|              | 0.83515       | 180.8   | 3.49E-06         | 0.9137 | 0.01062     |
|              | 0.93515       | 180.6   | 3.55E-06         | 0.9122 | 0.01059     |
|              | 1.03515       | 180.8   | 3.56E-06         | 0.9102 | 0.00899     |
|              | 1.13515       | 180.7   | 3.45E-06         | 0.9106 | 0.00928     |
|              | 1.23515       | 180.4   | 3.19E-06         | 0.9124 | 0.01053     |
|              | 1.33515       | 180.6   | 2.90E-06         | 0.9129 | 0.00975     |
|              | 1.38515       | 179.9   | 2.60E-06         | 0.9148 | 0.01158     |
|              | 1.43515       | 179.7   | 2.30E-06         | 0.9214 | 0.00755     |
|              | 1.48515       | 179.6   | 2.09E-06         | 0.9222 | 0.00868     |
|              | 1.53515       | 179.1   | 1.86E-06         | 0.9238 | 0.00939     |
|              | 0.04515       | 163.8   | 2.22E-06         | 0.9213 | 0.01047     |
|              | -0.06485      | 163.9   | 2.24E-06         | 0.9216 | 0.00838     |
|              | -0.26485      | 164.5   | 2.48E-06         | 0.9199 | 0.00846     |
|              | -0.46485      | 164.7   | 2.45E-06         | 0.9215 | 0.00889     |
|              | -0.66485      | 165.9   | 2.38E-06         | 0.9222 | 0.01203     |
|              | -0.86485      | 166.5   | 2.31E-06         | 0.9165 | 0.01181     |
|              | -1.06485      | 166.7   | 2.20E-06         | 0.9114 | 0.01087     |
|              | -1.26485      | 166.8   | 2.21E-06         | 0.9048 | 0.01259     |

|  | -1.46485 | 167.1 | 2.08E-06 | 0.9038 | 0.0086  |
|--|----------|-------|----------|--------|---------|
|  | -1.66485 | 167.8 | 1.90E-06 | 0.9097 | 0.1094  |
|  | -1.86485 | 167.7 | 1.84E-06 | 0.91   | 0.01044 |
|  | -2.06485 | 168.6 | 1.95E-06 | 0.9102 | 0.01114 |
|  | -2.26485 | 168.3 | 2.12E-06 | 0.9041 | 0.01381 |
|  | -2.36485 | 168.9 | 2.00E-06 | 0.9055 | 0.01234 |
|  | -2.46485 | 168.9 | 1.87E-06 | 0.9092 | 0.01329 |
|  | -2.56485 | 169.3 | 1.88E-06 | 0.9032 | 0.01202 |
|  | -2.66485 | 169.8 | 1.81E-06 | 0.9021 | 0.0104  |
|  | -2.71485 | 169.5 | 1.81E-06 | 0.8956 | 0.0098  |
|  | -2.76485 | 168.8 | 2.03E-06 | 0.8819 | 0.01191 |

## References

- Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K. & Grätzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. *Inorg. Chem.* 35, 1168–1178 (1996).
- 2. Barisci, J. N., Wallace, G. G., MacFarlane, D. R. & Baughman, R. H. Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. *Electrochem. commun.* **6**, 22–27 (2004).
- 3. MacFarlane, D. R., Sun, J., Golding, J., Meakin, P. & Forsyth, M. High conductivity molten salts based on the imide ion. *Electrochim. Acta* **45**, 1271–1278 (2000).