Supporting Information

Evaluating Chemical Bonding in Dioxides for the Development of Metal-Oxygen Batteries: Vibrational Spectroscopic Trends of Dioxygenyls, Dioxygen, Superoxides and Peroxides

Petar M. Radjenovic and Laurence J. Hardwick*

Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, L69 7ZF, United Kingdom.

*Corresponding author. E-mail: <u>hardwick@liverpool.ac.uk</u>

Table S1: Catalogue of Raman spectral bands reported as v_{0-0} or related to the v_{0-0} of [$C^+ \cdots O_2^{\cdot -2}$] complexes with monovalent cations reported in the literature. Coordinating cation M_r and calculated i_v and $\mathcal{H}_{i_v}^C$ values, system information, references are shown. See references for cation structure.

M _r	ν ₀₋₀	v_{O-O} other	i _v	Ж ^С	$\begin{bmatrix} C^+ \cdots O^{\bullet}_2 \end{bmatrix}$	Cathode	Ref.
	(cm ⁻¹)	(cm ⁻¹)	(ų)	,	salt/electrolyte		
				C	Cation: H ⁺		
1	1165*		7.2	7.2	0.1M HClO _{4(ag-acidic)}	rAu†	1
1	1162*		7.2	7.2	$0.1M \text{ HClO}_{4(aq.\text{-acidic})}$ $+ 0.5 \text{ mMBi}^{3+}$	rAu†	1
1		1147	7.2	7.2	Aqueous (pH 10, NaOH)	PEI#	2
1	*	1150 ^(NaO₂?)	7.2	7.2	0.1M NaOH _(aqbasic)	rAu [†]	3
1	*	1135(^{Na₂O₂.H₂O?)}	7.2	7.2	0.1 M NaOH _(aqbasic) + 10mM H ₂ O ₂	rAu^{\dagger}	3
1	1179		7.2	7.2	0.1 M TBAClO ₄ /DMSO	GC [‡]	4
1	1182		7.2	7.2	Pyr ₁₄ TFSI (leaking cell)	rAu [†]	ex.
				C	ation: Li ⁺		
7	1137		5.6	39.3	0.1 M LiClO ₄ /MeCN	rAu [†]	5
7	1125	1500 ^v c-o)	5.6	39.3	0.5 M LiClO ₄ /DMSO	GC‡	4
7	1128	1500	5.6	39.3	0.5 M LiClO ₄ /MeCN	GC [‡]	4
7	1134		5.6	39.3	0.1 M TBAOTf:	rAu [†]	6
					0.1 M LiOTf/DMSO		
7	1132		5.6	39.3	0.1 M LiClO ₄ /MeCN	rAu [†]	7
7		1110	5.6	39.3	0.1 M LiClO ₄ /DMSO	rAu [†]	7,8
7		1160 (not LiO2)	5.6	39.3	0.1 M LiClO ₄ /DMSO/	rAu [†]	8
					Complexing-agent		
7	~1143		5.6	39.3	0.1 M LiClO ₄ /DMSO	Au-Ni foam [†]	9
7		1107	5.6	39.3	0.01 M LiTFSI/Pyr ₁₄ TFSI	NS Au^{\dagger}	10
7		1110	5.6	39.3	0.01 LiTFSI/EmimTFSI	NS Au^{\dagger}	10
7	~1175		5.6	39.3	0.5 M LiOTf/DEGME	KB/ PTFE [#]	11
7	1123		5.6	39.3	1.0 M LiOTf/TEGDME	AC/ PVDF#	12
7	1123	$1505(^{\nu_{C}-0})$	5.6	39.3	1.0 M LiOTf/TEGDME	AC/ PVDF#	13
7	1123	$1505(^{\nu_{C}-0})$	5.6	39.3	1.0 M LiOTf/TEGDME	AC/ PVDF#	14
7	1123	$1500(^{\nu_{C}-o})$	5.6	39.3	1.0 M LiOTf/TEGDME	AC/ PVDF#	15

M _r	v ₀₋₀	v_{O-O} other	i _v	$\mathfrak{K}_{i_{v}}^{C}$	$C^+ \cdots O^{\bullet}_{2}$	Cathode	Ref.
	(cm ⁻¹)	(cm ⁻¹)	(ų)	,	salt/electrolyte		
7	1125	1500 ^v _C - 0)	5.6	39.3	1.0 M LiOTf/TEGDME	Ir-rGO/ PVDF#	16
7	1125	$1525(^{\nu_{C}-o})$	5.6	39.3	Not specified	C/ PVDF [#]	17
7	1123		5.6	39.3	0.1 M LiClO ₄ /TEGDME	RuCNT/PVDF [#]	18
7	1130		5.6	39.3	0.5 M LiClO ₄ / DMSO	EPPG	19
7	****		5.6	39.3	0.5 M LiClO ₄ / DMSO	EPPG	19
7	1130	1530	5.6	39.3	0.5 M LiClO ₄ / DMSO	BPPG	19
7	*****		5.6	39.3	0.5 M LiClO ₄ / DMSO	BPPG	19
7	1130	1543	5.6	39.3	0.5 M LiClO ₄ / DMSO	SuperC/PTFE	19
7	*****		5.6	39.3	0.5 M LiClO ₄ / DMSO	SuperC/PTFE	19
	**						
7	1130	$1543(^{\nu_{C}-0})$	5.6	39.3	0.5 M LiClO ₄ /DMSO	SP/PTFE (1.9 V) ³	\$ 19
7		1098,	5.6	39.3	0.5 M LiClO ₄ /DMSO	SP/PTFE (3.1 V) ³	\$ 19
		$1490(^{\nu_{C-0}})$					
	**						
	**						
				Ca	tion: Na ⁺		
23	1156		10.1	233	NaO ₂ salt	#	20
23	1156		10.1	233	NaO ₂ salt (300-200 K)	#	21
23		1164	10.1	233	NaO_2 salt (80 K)	#	21
23	1155	1152	10.1	233	$NaO_2 $ salt (> 200 K)	#	22
23		1164,	10.1	233	NaO_2 salt (< 200 K)	#	22
		~1145					
23	1156	1107, 488(^v _{Au - 0)}	10.1	233	0.1 M NaOTf/DMSO	rAu [†]	23
23	1161	1119	10.1	233	0.1 M NaOTf/DMA	rAu [†]	23
23		1109 (sol)	10.1	233	0.1 M NaOTf/DEGDME	rAu [†]	23
23		1108 (sol)	10.1	233	0.1 M NaOTf/MeCN	rAu [†]	23
23	1156		10.1	233	0.5 M NaOTf/DEGDME	GDL#	24
23	1155		10.1	233	0.5 M NaOTf/DEGDME	CP#	25
23		$1135(^{Na_2O_2.H_2O?})$	10.1	233	0.5 M NaOTf/DEGDME	CP#	25
23	1154		10.1	233	NaOTf/PC:Pip ₁₃ TFSI:	VACNT [#]	26
					TEGDME		
23	1156		10.1	233	0.1 M NaClO ₄ /DME	CNT#	27
23		1136(^{Na202.H20?})	10.1	233	0.1 M NaClO ₄ /DME +air	CNT#	27
23	1153		10.1	233	1 M NaClO ₄ /DME	P50 C#	28
23	1156		10.1	233	0.5 M NaOTf/DEGDME	KB/ PTFE [#]	29
23		$1136(^{Na_2O_2.H_2O?})$	10.1	233	0.5 M NaOTf/DEGDME	KB/ PTFE [#]	29

M _r	v_{0-0}	v_{O-O} other	i _v	$\mathbb{K}_{i_{n}}^{C}$	$\begin{bmatrix} C^+ \cdots O^{\bullet}_{2} \end{bmatrix}$	Cathode	Ref.
	(cm ⁻¹)	(cm ⁻¹)	(ų)	·	salt/electrolyte		
23		1142(^{Na202.H20} ?)	10.1	233	N ₂ O ₂ salt impurity	#	30
23		$1141(^{Na_2O_2.H_2O_?})$	10.1	233	N_2O_2 salt impurity	#	31
23		$1136(^{Na_2O_2.H_2O_?})$	10.1	233	N_2O_2 salt impurity	#	32
				C	ation: K ⁺		
39	1143		21.1	824	KO_2 salt	#	33
39		1163(^{H0} 2 [?])	21.1	824	impurity in KO ₂	#	33
39	1141		21.1	824	KO_2 salt (300 K)	#	21
39	~1145		21.1	824	KO ₂ salt (200-80 K)	#	21
39	1146		21.1	824	KO ₂ salt	#	34
39	1148		21.1	824	K ₂ O ₂ impurity	#	32
39	1145		21.1	824	KO_2 salt	#	35
39	1145		21.1	824	KO ₂ salt	#	30
39	1142		21.1	824	0.5 M KPF ₆ /DME	SP-Ni foam [#]	36
39	1144		21.1	824	KO ₂ salt	#	ex.
				Cat	tion: TMA+		
74	1123		104.1	7700	TMAO ₂ salt	#	35
74	1125		104.1	7700	TMAO ₂ salt	#	37
				Ca	ation: Rb ⁺		
85.5	1141		26.6	2273	Rb_2O_2 salt	#	32
85.5		1124	26.6	2273	Rb ₂ O ₂ impurity	#	32
85.5	1,140		26.6	2273	RbO ₂ salt (75-300 K)	#	21
85.5	1140		26.6	2273	RbO ₂ salt	#	34
				Cat	ion: TMPh+		
91.1	1123		117.3	10,660	TMPhO ₂ salt	#	37
				Ca	tion: TEA+		
130	1115		175.7	22,846	0.1M TBAOTf/MeCN	rAu [†]	38
				Ca	ation: Cs ⁺		
133	1132		35.2	4682	CsO_2 salt	#	33
133	1134		35.2	4682	CsO_2 salt	#	39
133	1130		35.2	4682	0.1 M CsClO ₄ /DMSO	rAu [†]	6

M _r	v_{0-0}	v_{O-O} other	i _v	$\mathfrak{K}_{i_{v}}^{C}$	$\begin{bmatrix} C^+ \cdots O^{\bullet}_{2} \end{bmatrix}$	Cathode	Ref.
	(cm ⁻¹)	(cm ⁻¹)	(ų)	,	salt/electrolyte		
133	1137		35.2	4682	CsO2 salt (80-300 K)	#	21
133	1134		35.2	4682	CsO_2 salt	#	40
				Cat	ion: TMAs+		
135.1	1122		168.5	22,751	TMAsO ₂ salt	#	41
				Cati	on: TMAp+		
136.2	1121		122.8	16,725	TMAph salt	#	41
				Cat	tion: TPA+		
186.4	1113		248.9	46,329	0.1 M TBAOTf/ MeCN	rAu†	38
				Cat	tion: TBA+		
242	1109	491 ^{(v} Au - 0)	322.5	78,038	0.1 M TBAClO ₄ / MeCN	rAu†	5
242	1110	486 ^{(v} Au - 0)	322.5	78,038	0.1 M TBAClO ₄ / DMSO	rAu†	42
242	1110		322.5	78,038	0.1 M TBAClO ₄ / DMSO	rAu [†]	7
242	1110	490 ^{(v} Au - 0)	322.5	78,038	0.1 M TBAClO ₄ / DMSO	rAu [‡]	4
242	1110	490 ^{(v} Au - 0)	322.5	78,038	0.1 M TBAClO ₄ / DMSO	Au‡	4
242	1108	456-484 ^(v_{Au-0})	322.5	78,038	0.1 M TBAClO ₄ / DMSO	Pt [‡]	4
242	1108	486 ^{(v} Au - 0)	322.5	78,038	0.1 M TBAClO ₄ / DMSO	Pd [‡]	4
242	~1115	$\sim 1520(^{\nu_{C}-o})$	322.5	78,038	0.1 M TBAClO ₄ / DMSO	GC [‡]	4
242	1106		322.5	78,038	0.1 M TBAOTf/ DMSO	rAu†	38
242	1104		322.5	78,038	0.1 M TBAOTf/ MeCN	rAu†	38
242		$1131(^{NH_3})$ impurity)	322.5	78,038	TBAO ₂ salt	#	41

[†] denotes *in situ* SERS studies at the electrode interface. [‡] denotes in situ shell isolated nanoparticle enhanced Raman spectroscopic (SHINERS) studies at the electrode interface. [#] denotes ex situ Raman measurements. ex. denotes unreported spectral bands we observed experimentally.

O_2^x complex	ν ₀₋₀ (cm ⁻¹)	Calculated K (mdyn Å ⁻¹)	Calculated B_L (Å)	Calculated H (kJ mol ⁻¹)	Calculated <i>B</i> _o	Closest B _o	Calculated e ⁻ covalency	Ref.
Gaseous 0 ₂ +	1876	16.24	1.1219	641.4	2.5	2.5	0	43,44
$O_2Sb_2F_{11}$	1864	16.04	1.1288	633.4	2.470	2.5	-12.1	45
O ₂ SbF ₆	1862	16.01	1.1299	632.1	2.466	2.5	-13.7	43
O ₂ SbF ₆	1861	16.00	1.1305	631.5	2.464	2.5	-14.4	45
$O_2Nb_2F_{11}$	1858	15.95	1.1322	629.5	2.458	2.5	-16.7	45
$O_2Ta_2F_{11}$	1858	15.95	1.1322	629.5	2.458	2.5	-16.7	45
O ₂ AsF ₆	1858	15.95	1.1322	629.5	2.458	2.5	-16.7	45
O ₂ AsF ₆	1857	15.93	1.1327	628.9	2.456	2.5	-17.4	46
O ₂ PF ₆	1857	15.93	1.1327	628.9	2.456	2.5	-17.4	47
$O_2Bi_2F_{11}$	1853	15.87	1.1349	626.4	2.449	2.5	-20.4	45
O ₂ NbF ₆	1853	15.87	1.1349	626.4	2.449	2.5	-20.4	45
O ₂ BiF ₆	1847	15.77	1.1381	622.6	2.438	2.5	-24.9	45
O ₂ RuF ₆	1838	15.62	1.1428	617.1	2.421	2.5	-31.6	45
O ₂ PtF ₆	1838	15.61	1.1433	616.5	2.419	2.5	-32.3	45
O ₂ AuF ₆	1835	15.58	1.1443	615.3	2.416	2.5	-33.7	45
O ₂ RhF ₆	1825	15.41	1.1493	609.5	2.398	2.5	-41.0	45
O ₂ :Heme complex (asy.)	1663	12.86	1.2116	533.9	2.138	2.0	55.0	48
O ₂ :Heme complex	1597	11.90	1.2303	510.1	2.047	2.0	18.7	48
02	1556	11.33	1.2408	496.4	1.994	2.0	-2.4	49
02	1555	11.32	1.2410	496.1	1.993	2.0	-2.9	34
02	1552	11.28	1.2418	495.2	1.989	2.0	-4.4	50
02	1552	11.28	1.2418	495.2	1.989	2.0	-4.4	51
02	1549	11.24	1.2425	494.2	1.985	2.0	-5.9	52
Fe ^{III} :O ₂ complex	1310	8.32	1.2949	423.1	1.713	1.5	85.4	53
Fe ^{III} :O ₂ complex	1260	7.77	1.3054	408.3	1.660	1.5	64.1	54
$[Cr^{III}(O_2)(TMC-Im)]^{2+}$	1196	7.08	1.3195	388.5	1.592	1.5	36.8	55
HO ₂	1179	6.89	1.3234	383.0	1.574	1.5	29.5	4
HO ₂	1165	6.74	1.3267	378.4	1.559	1.5	23.4	1
HO ₂	1162	6.71	1.3274	377.4	1.555	1.5	22.1	1
NaO ₂ (in DMA)	1161	6.70	1.3276	377.0	1.554	1.5	21.7	23
NaO ₂ (in DMSO)	1156	6.65	1.3288	375.4	1.549	1.5	19.5	23

Table S2. Catalogue of estimated bond parameters for various O_2^x species calculated from the

 v_{0-0} values reported in the literature as plotted in Figure 6

S6

O_2^x complex	v_{0-0}	Calculated K (mdyn Å ⁻¹)	Calculated	Calculated H (kI mol ⁻¹)	Calculated	Closest	Calculated	Ref.
	(cm)	K (muyn rr)	^L (A)		0	0	%	
NaO ₂ (300 K)	1156	6.65	1.3288	375.4	1.549	1.5	19.5	21
NaO ₂	1156	6.65	1.3288	375.4	1.549	1.5	19.5	24
NaO ₂	1156	6.65	1.3288	375.4	1.549	1.5	19.5	27
NaO ₂	1156	6.65	1.3288	375.4	1.549	1.5	19.5	29
NaO ₂	1155	6.64	1.3290	375.0	1.548	1.5	19.1	25
NaO ₂ (200 K)	1155	6.64	1.3290	375.0	1.548	1.5	19.1	21
NaO ₂	1154	6.63	1.3293	374.7	1.547	1.5	18.6	26
NaO ₂	1153	6.62	1.3295	374.3	1.545	1.5	18.2	28
Cu:O ₂ complex - L44+	1149	6.57	1.3305	373.0	1.541	1.5	16.4	56
KO ₂	1148	6.56	1.3307	372.7	1.540	1.5	16.0	32
RbO ₂	1148	6.56	1.3307	372.7	1.540	1.5	16.0	57
KO ₂	1146	6.54	1.3312	372.0	1.538	1.5	15.1	34
KO ₂	1145	6.53	1.3314	371.6	1.537	1.5	14.7	35
KO ₂	1145	6.53	1.3314	371.6	1.537	1.5	14.7	30
KO ₂ (200 K)	1144	6.52	1.3317	371.3	1.536	1.5	14.2	21
KO ₂	1143	6.51	1.3319	370.9	1.535	1.5	13.8	33
KO ₂	1142	6.50	1.3321	370.6	1.533	1.5	13.4	36
КО ₂ (300 К)	1141	6.49	1.3324	370.3	1.532	1.5	12.9	21
RbO ₂	1141	6.49	1.3324	370.3	1.532	1.5	12.9	32
RbO ₂ (300 K)	1140	6.49	1.3324	370.3	1.532	1.5	12.9	21
RbO ₂	1140	6.48	1.3326	369.9	1.531	1.5	12.5	34
RbO ₂ (200 K)	1138	6.46	1.3331	369.2	1.529	1.5	11.6	21
CsO ₂ (300 K)	1137	6.45	1.3334	368.9	1.528	1.5	11.2	21
CsO ₂	1135	6.42	1.338	368.2	1.526	1.5	10.3	57
CsO ₂	1134	6.41	1.3341	367.8	1.525	1.5	9.8	39
CsO ₂	1134	6.41	1.3341	367.8	1.525	1.5	9.8	40
CsO ₂	1132	6.39	1.3346	367.1	1.522	1.5	9.0	33
Cu:O ₂ complex - TPA ^{6,N}	1130	6.37	1.3351	366.4	1.520	1.5	8.1	58
TMAO ₂	1125	6.32	1.3363	364.7	1.515	1.5	5.9	37
$(TP^{Me2})_2SmO_2$	1124	6.31	1.3366	364.3	1.514	1.5	5.4	52
TMAO ₂	1123	6.30	1.3368	364.0	1.512	1.5	5.0	35
TMPhO ₂	1123	6.30	1.3368	364.0	1.512	1.5	5.0	37
Co ^{III} :O ₂ complex 2	1123	6.30	1.3368	364.0	1.512	1.5	5.0	59
TMAsO ₂	1122	6.29	1.3371	363.6	1.511	1.5	4.5	37
Co ^{III} :O ₂ complex 1	1122	6.29	1.3371	363.6	1.511	1.5	4.5	59
Cu:O ₂ complex - L42a	1122	6.29	1.3371	363.6	1.511	1.5	4.5	56,60

O_2^x complex	ν _{0 - 0} (cm ⁻¹)	Calculated K (mdyn Å ⁻¹)	Calculated B_L (Å)	Calculated H (kJ mol ⁻¹)	Calculated <i>B_o</i>	Closest B _o	Calculated e ⁻ covalency	Ref.
TMAphO ₂	1121	6.28	1.3373	363.3	1.510	1.5	% 4.1	41
$Cu:O_2$ complex - L41b	1121	6.28	1.3373	363.3	1.510	1.5	4.1	56
Cu:O ₂ complex - L41c	1121	6.28	1.3373	363.3	1.510	1.5	4.1	56
Cu:O ₂ complex - L42d	1120	6.27	1.3376	362.9	1.509	1.5	3.6	56
Cu:O ₂ complex - Tren ^{Me}	1120	6.27	1.3376	362.9	1.509	1.5	3.6	58
Cu:O ₂ complex - Tren ^{TMG}	1120	6.27	1.3376	362.9	1.509	1.5	3.6	58
Cu:O ₂ complex - TACN	1120	6.27	1.3376	362.9	1.509	1.5	3.6	58
Cu:O ₂ complex - L44	1117	6.23	1.3383	361.8	1.506	1.5	2.3	56
Cu:O ₂ complex - L68	1117	6.23	1.3383	361.8	1.506	1.5	2.3	56
TEAO ₂ (in MeCN on Au)	1115	6.21	1.3388	361.1	1.504	1.5	1.4	38
TPAO ₂ (inMeCN on Au)	1113	6.19	1.3393	360.4	1.501	1.5	0.5	38
$Cu:O_2$ complex - Tp^{tBu}	1112	6.18	1.3396	360.1	1.500	1.5	0.1	60
Cu:O ₂ complex - L39a	1112	6.18	1.3396	360.1	1.500	1.5	0.1	56
Molecule 1	1112	6.18	1.3396	360.1	1.500	1.5	0.1	52
TBAO ₂ (in DMSO on Au)	1110	6.16	1.3401	359.3	1.498	1.5	-0.8	42
TBAO ₂ (in DMSO on Au)	1110	6.16	1.3401	359.3	1.498	1.5	-0.8	7
TBAO ₂ (in DMSO on Au)	1110	6.16	1.3401	359.3	1.498	1.5	-0.8	4
TBAO ₂ (in MeCN on Au)	1109	6.15	1.3403	359.0	1.497	1.5	-1.3	5
Co ^{III} :O ₂ complex 3	1108	6.14	1.3406	358.6	1.496	1.5	-1.7	59
TBAO ₂ (in DMSO on Pd)	1108	6.14	1.3406	358.6	1.496	1.5	-1.7	4
TBAO ₂ (in DMSO on GC)	1107	6.13	1.3408	358.2	1.495	1.5	-2.2	4
TBAO ₂ (in MeCN on Au)	1104	6.10	1.3416	357.2	1.491	1.5	-3.5	38
Cu:O ₂ complex - L28a	1104	6.10	1.3416	357.2	1.491	1.5	-3.5	56
Molecule 3	1104	6.10	1.3416	357.2	1.491	1.5	-3.5	52
Co ^{III} complex 4	1099	6.04	1.3429	355.3	1.486	1.5	-5.3	59
Cu:O ₂ complex - L42b	1096	6.01	1.3437	354.2	1.482	1.5	-7.1	56
Co ^{III} complex	1078	5.79	1.3493	346.3	1.458	1.5	-16.7	59
Molecule 4	1072	5.76	1.3501	345.1	1.455	1.5	-18.1	52
Co ^{III} complex B	1063	5.66	1.3525	341.6	1.44	1.5	-22.2	59
$Cu:O_2$ complexe – $Tp^{Ad, iPr}$	1058	5.61	1.3539	339.7	1.439	1.5	-24.6	60
$O_{2}^{\bullet -}$ - on Ag (UHV)	1057							61
$O_{2}^{\bullet-}$ - on Ag (UHV)	1053	5.56	1.3553	337.7	1.433	1.5	-26.9	62
$Cu:O_2$ complex – L39b	1043	5.45	1.3582	333.6	1.421	1.5	-31.6	56
Cu ^{II} :O ₂ complex – HB ₃	1043	5.45	1.3582	333.6	1.421	1.5	-31.6	58
Cu ^{II} :O ₂ complex – PddcT	1033	5.35	1.3611	329.5	1.409	1.5	-36.3	58
Cu ^{II} :O ₂ complex – L33c	1033	5.35	1.3611	329.5	1.409	1.5	-36.3	56

O_2^x complex	ν ₀₋₀ (cm ⁻¹)	Calculated K (mdyn Å ⁻¹)	Calculated B_L (Å)	Calculated H (kJ mol ⁻¹)	Calculated <i>B_o</i>	Closest B _o	Calculated e ⁻ covalency %	Ref.
Molecule 5	1027	5.29	1.3629	326.9	1.402	1.5	-39.2	52
Molecule 8	983	4.83	1.3767	307.4	1.348	1.5	-60.7	52
Cu:O ₂ complex – L2g	977	4.77	1.3787	304.5	1.341	1.5	-63.7	56
Cu:O ₂ complex – L3b	974	4.74	1.3797	303.1	1.337	1.5	-65.2	56
Cu:O ₂ complex – L74a	970	4.70	1.3807	301.7	1.333	1.5	-66.8	56
Cu:O ₂ complex – L74b	970	4.69	1.3810	301.2	1.332	1.5	-67.3	56
$Cu:O_2$ complex – Dk^{iPr}	968	4.67	1.3817	300.2	1.329	1.5	-68.3	60
Cu:O ₂ complex – L2d	968	4.67	1.3817	300.2	1.329	1.5	-68.3	56
Molecule 6	968	4.67	1.3817	300.2	1.329	1.5	-68.3	52
Cu:O ₂ complex – H ₃ bpa	964	4.63	1.3831	298.3	1.324	1.5	-70.3	60
$Cu:O_2$ complex – L75	964	4.63	1.3831	298.3	1.324	1.5	-70.3	56
Multiple organo:O ₂ complexes	1000- 800							63
$Cu:O_2$ complex – Dk^{iPr}	961	4.60	1.3841	296.8	1.320	1.5	-71.9	60
$Cu:O_2$ complex – L2e	961	4.60	1.3841	296.8	1.320	1.5	-71.9	56
ZnO ₂	944	4.43	1.3902	288.2	1.298	1.5	-80.7	32
MgO ₂	934	4.33	1.3939	283	1.285	1.5	-85.9	32
CdO ₂	932	4.30	1.3946	282.0	1.283	1.5	-86.8	32
Organic:0 ₂	910 895 848	4.08	1.4031	269.9	1.253	1.5	-98.8	64
Organic:0 ₂	910 892 844	4.08	1.4031	269.9	1.253	1.5	-98.8	64
[CuOOH]+ – L35a	900	3.98	1.4072	264.2	1.239	1.0	95.7	56
Organic:O ₂	899							64
Organic:0 ₂	873 898 870	3.96	1.4080	263.1	1.237	1.0	94.6	64
Organic:0 ₂	896 858	3.94	1.4088	261.9	1.234	1.0	93.5	64
Organic:O ₂	895 857	3.93	1.4093	261.3	1.232	1.0	93.0	64
Organic:0 ₂	894 855	3.92	1.4097	260.7	1.231	1.0	92.4	64
Organic:O ₂	894 840	3.92	1.4097	260.7	1.231	1.0	92.4	64
UnOH [Cu ₂ Li(00H)] ⁺	892	3.9	1.4105	259.5	1.228	1.0	91.3	60
Molecule 9	892	3.9	1.4105	259.5	1.228	1.0	91.3	52
Cu:O ₂ complex – UnOH	892	3.90	1.4105	259.5	1.228	1.0	91.3	60
Molecule 7	891	3.90	1.4105	259.5	1.228	1.0	91.3	52

O_2^x complex	v_{0-0}	Calculated	Calculated	Calculated	Calculated	Closest	Calculated	Ref.
*	(cm ⁻¹)	K (mdyn Å ⁻¹)	^B ^L (Å)	H (kJ mol ⁻¹)	B _o	B _o	e ⁻ covalency %	
[CuOOR]+ – L42a	887	3.85	1.4126	256.6	1.221	1.0	88.5	56
[CuOOR]+ – L69	887	3.85	1.4126	256.6	1.221	1.0	88.5	56
[CuOOR]+ – L18d	885	3.83	1.4135	255.4	1.218	1.0	87.4	56
[CuOOR]+ – L39a	884	3.83	1.4139	254.8	1.217	1.0	86.8	56
[Cu:O ₂]– L40e (in MeCN)	883	3.82	1.4143	254.2	1.216	1.0	86.3	56
Organo:O ₂ Complex	883	3.81	1.4148	253.5	1.214	1.0	85.7	64
DiEthyl:O ₂	882	3.81	1.4148	253.5	1.214	1.0	85.7	64
Organo:O ₂ Complex	881	3.80	1.4152	252.9	1.213	1.0	85.1	64
[Cu:O ₂] – L53 (in Ac)	881	3.80	1.4152	252.9	1.213	1.0	85.1	56
[CuOOH]+ – L66a	881	3.80	1.4152	252.9	1.213	1.0	85.1	56
[CuOOH]+ – L70b	880	3.79	1.4156	252.3	1.211	1.0	84.6	56
H_2O_2	880	3.79	1.4156	252.3	1.211	1.0	84.6	64,65
H_2O_2	876	3.75	1.4174	249.9	1.206	1.0	82.3	66
H_2O_2	875	3.74	1.4178	249.2	1.204	1.0	81.7	67
CF_4O_2	875	3.74	1.4178	249.2	1.204	1.0	81.7	64
SrO ₂ (0.9/0.1)	873	3.72	1.4187	248.0	1.201	1.0	80.6	68
[Cu:O ₂]– L54 (in EtCN)	870	3.69	1.4200	246.1	1.197	1.0	78.9	56
SrO ₂ (0.96/0.04)	870	3.69	1.4200	246.1	1.197	1.0	78.9	68
[Cu:O ₂] – L40f (in MeCN)	868	3.67	1.4209	244.9	1.194	1.0	77.7	56
SrO ₂ (0.98/0.02)	865	3.64	1.4223	242.9	1.190	1.0	76.0	68
MgO ₂	864 934	3.63	1.4228	242.3	1.189	1.0	75.4	32
SrO ₂	863	3.62	1.4232	241.7	1.187	1.0	74.9	32
CF ₃ O ₂ D	863	3.62	1.4232	241.7	1.187	1.0	74.9	64
[CuOOH]+ – L40e	860	3.59	1.4246	239.7	1.183	1.0	73.1	56
Cu:O ₂ – L65b (in MeCN)	860	3.59	1.4246	239.7	1.183	1.0	73.1	56
CF ₃ O ₂ H	860	3.59	1.4246	239.7	1.183	1.0	73.1	64
LiOOH.H ₂ O	860	3.59	1.4246	239.7	1.183	1.0	73.1	69
[CuOOR]+ – L18b	855	3.54	1.4269	236.5	1.176	1.0	70.2	56
[CuOOH]+ – L43a	853	3.53	1.4279	235.1	1.173	1.0	69.0	56
BaO ₂ (0.79/0.21)	853	3.53	1.4279	235.1	1.173	1.0	69.0	68
[CuOOH]+ – L40b	851 835	3.51	1.4288	233.8	1.170	1.0	67.9	56
[CuOOH]+ – L45	851	3.51	1.4288	233.8	1.170	1.0	67.9	56
BaO ₂ (0.86/0.14)	851	3.51	1.4288	233.8	1.170	1.0	67.9	68
[CuOOH]+ – L43b	848	3.48	1.4302	231.8	1.165	1.0	66.1	56
[Cu:O ₂] – L78a (in THF)	848	3.48	1.4302	231.8	1.165	1.0	66.1	56
bisp ₂ xyl ^g	847	3.47	1.4307	231.1	1.164	1.0	65.5	60

O_2^{χ} complex	v_{0-0}	Calculated	Calculated	Calculated	Calculated	Closest	Calculated	Ref.
	(cm ⁻¹)	K (mdyn A ⁻¹)	^B ^L (Å)	H (kJ mol ⁻¹)	B ₀	B ₀	e ⁻ covalency %	
ZnO ₂	847	3.47	1.4307	231.1	1.164	1.0	65.5	32
[CuOOR]+ – L42a	846	3.46	1.4312	230.5	1.162	1.0	64.9	56
[CuOOR]+ – L39c	844	3.44	1.4322	229.1	1.159	1.0	63.7	56
MePy ₂ 2Pz	844	3.44	1.4322	229.1	1.159	1.0	63.7	60
[CuOOH]+ - L39a	843	3.43	1.4327	228.4	1.158	1.0	63.1	56
[CuOOR]+ - L39a	843	3.43	1.4327	228.4	1.158	1.0	63.1	56
BaO ₂ (0.97/0.03)	843	3.43	1.4327	228.4	1.158	1.0	63.1	68
L3CuOOH excited	843	3.43	1.4327	228.4	1.158	1.0	63.1	58
BaO ₂	842	3.42	1.4331	227.7	1.156	1.0	62.6	32
bisp ^g (in EtCN)	840	3.40	1.4341	226.4	1.153	1.0	61.4	60
bisp ₂ pr ^g (in EtCN)	837	3.38	1.4356	224.3	1.149	1.0	59.6	60
$[Cu:O_2] - L30$ (in CH_2Cl_2)	837	3.38	1.4356	224.3	1.149	1.0	59.6	56
[Cu:O ₂] – L40d (in THF)	835	3.36	1.4366	222.9	1.146	1.0	58.4	56
CaO ₂	835	3.36	1.4366	222.9	1.146	1.0	58.4	32
[P-tmpa][O ₂]	832	3.33	1.4381	220.8	1.141	1.0	56.6	60
[Cu:O ₂] – L41a (in EtCn)	832	3.33	1.4381	220.8	1.141	1.0	56.6	56
$[Cu:O_2]$ – L28a (in DMF/THF)	832	3.33	1.4381	220.8	1.141	1.0	56.6	56
[Cu:O ₂] – L60 (in Ac)	832	3.33	1.4381	220.8	1.141	1.0	56.6	56
oxy-Hc	832	3.33	1.4381	220.8	1.141	1.0	56.6	58
Bpman (CH ₂ Cl ₂)	831	3.32	1.4386	220.1	1.140	1.0	56.0	60
[CuOOH]+ - L33c	831	3.32	1.4386	220.1	1.140	1.0	56.0	56
[CuOOR] ^{+b} – L42c	831	3.32	1.4386	220.1	1.140	1.0	56.0	56
Organo:O ₂ Complex	830	3.31	1.4391	219.4	1.138	1.0	55.4	64
[Cu:O ₂] – L82 (in MeTHF)	828	3.29	1.4401	218.0	1.135	1.0	54.2	56
Cu ^{II} :O ₂ complex (in EtO)	827	3.28	1.4406	217.2	1.134	1.0	53.6	60
[Cu:O ₂] – L69	827	3.28	1.4406	217.2	1.134	1.0	53.6	56
[Cu:O ₂] – L41a (MeTHF)	827	3.28	1.4406	217.2	1.134	1.0	53.6	56
Me ₆ trend	825	3.27	1.4417	215.8	1.131	1.0	52.3	60
[Cu:O ₂] – L42a	825	3.27	1.4417	215.8	1.131	1.0	52.3	56
bisp ₂ et ^g	824	3.26	1.4422	215.1	1.129	1.0	51.7	60
<i>I</i> Pr ₂ Py ^{5 Me} tacn ^f	823	3.25	1.4427	214.4	1.128	1.0	51.1	60
tmpaMe0	822	3.24	1.4432	213.6	1.126	1.0	50.5	60
iPr ₂ PyHtacn	822	3.24	1.4432	213.6	1.126	1.0	50.5	60
[CuOOH]+ - L83	822	3.24	1.4432	213.6	1.126	1.0	50.5	56
[Cu:O ₂] – L40a (in MeTHF)	822	3.24	1.4432	213.6	1.126	1.0	50.5	56
[Cu:O ₂] – L67 (in MeTHF)	817	3.19	1.4458	210.0	1.119	1.0	47.4	56
[Cu:O ₂] – L31a (in Ac)	816	3.18	1.4464	209.2	1.117	1.0	46.8	56

O_2^x complex	v_{0-0}	Calculated	Calculated	Calculated	Calculated	Closest	Calculated	Ref.
	(cm ⁻)	K (IIIUyii K -)	$D_{L}(\mathbf{A})$		D_0		%	
BeO ₂	815	3.18	1.4469	208.5	1.116	1.0	46.2	32
tmpaMe ₂ N	812	3.15	1.4485	206.2	1.111	1.0	44.4	60
[Cu:O ₂] – L31a (in MeTHF)	811	3.14	1.4490	205.5	1.109	1.0	43.7	56
[Cu:O ₂] complex	803	3.07	1.4534	199.4	1.097	1.0	38.8	60
[Cu:O ₂] – L65b	803	3.07	1.4534	199.4	1.097	1.0	38.8	56
Heme:O ₂ complex	803	3.07	1.4534	199.4	1.097	1.0	38.8	58
Oxy-Hc	803	3.07	1.4534	199.4	1.097	1.0	38.8	58
triperox- idediamine	800	3.04	1.4551	197.1	1.092	1.0	36.9	63
Li_2O_2	800	3.04	1.4551	197.1	1.092	1.0	36.9	8
Cu:O ₂ complex	799	3.04	1.4556	196.3	1.091	1.0	36.2	56
Li_2O_2	796	3.01	1.4573	193.9	1.086	1.0	34.4	70
Rb:O ₂ complex	795	3.00	1.4579	193.2	1.084	1.0	33.7	71
Li ₂ O ₂	791	2.97	1.4602	190.0	1.078	1.0	31.2	72
Li ₂ O ₂	790	2.96	1.4608	189.2	1.076	1.0	30.5	32
Li ₂ O ₂	790	2.96	1.4608	189.2	1.076	1.0	30.5	9
Li ₂ O ₂	789	2.95	1.4613	188.4	1.075	1.0	29.9	73
Li ₂ O ₂	788	2.94	1.4619	187.6	1.073	1.0	29.3	57
Li ₂ O ₂	788	2.94	1.4619	187.6	1.073	1.0	29.3	42
Li ₂ O ₂	788	2.94	1.4619	187.6	1.073	1.0	29.3	15
Li ₂ O ₂	785	2.92	1.4637	185.1	1.068	1.0	27.3	74
Rb ₂ O ₂	782	2.89	1.4654	182.7	1.064	1.0	25.4	32
Rb ₂ O ₂	782	2.89	1.4654	182.7	1.064	1.0	25.4	57
Organo:O ₂ complex	781	2.88	1 4660	1818	1 062	10	248	64
Organo:O ₂ complex	779	2.87	1.4672	180.2	1.059	1.0	23.5	64
Organo:O ₂ complex	774	2.83	1.4702	176.0	1.051	1.0	20.2	64
Organo:O ₂ complex	771	2.80	1.4721	173.4	1.046	1.0	18.3	64
K ₂ O ₂	762 746	2.73	1.4777	165.6	1.031	1.0	12.3	32
$K_{2}O_{2}$	759	2.71	1.4796	163.0	1.026	1.0	10.3	57
Cs_2O_2	753	2.66	1.4835	157.6	1.016	1.0	6.3	57
Rb ₂ O ₂	750	2.64	1.4855	154.8	1.011	1.0	4.3	75
Cu:O ₂ complex	750	2.64	1.4855	154.8	1.011	1.0	4.3	58
Oxy-Hc	749	2.63	1 4861	1539	1 009	10	36	58
Cs_2O_2	743	2.59	1.4902	148.4	0.999	1.0	-0.5	76
Co ^{III} complex	742	2.58	1.4908	147.4	0.997	1.0	-1.2	77
Cs ₂ O ₂	742	2.58	1.4908	147.4	0.997	1.0	-1.2	40
O_2 complex	742	2.58	1.4908	147.4	0.997	1.0	-1.2	78

O_2^x complex	ν _{0 - 0} (cm ⁻¹)	Calculated K (mdyn Å ⁻¹)	Calculated B_L (Å)	Calculated H (kJ mol ⁻¹)	Calculated <i>B</i> _o	Closest B _o	Calculated e ⁻ covalency %	Ref.
Na ₂ O ₂	738 793	2.55	1.4936	143.6	0.99	1.0	-3.9	57
Na ₂ O ₂	736 791	2.54	1.4950	141.7	0.987	1.0	-5.3	32
Co ^{II} :O ₂ complex	730	2.50	1.4992	135.9	0.976	1.0	-9.4	79
Org:O ₂ complex	713	2.39	1.5116	118.7	0.947	1.0	-21.4	64

Figure S1. From reports listed in Table S1, the v_{0-0} Raman bands for $[C^+ \cdots O_2^{\bullet_2}]$ complexes are plotted against $\log_{10}[\mathcal{M}_{i_{s.a.}}^{C}]$ of the coordinating cation. Values were calculated in Spartan 15 using a CPK model for single atom cations (blue) and DFT (B3LYP, 6-31G*) for molecular cations (red).

References

- 1 X. Li and A. a. Gewirth, J. Am. Chem. Soc., 2005, 127, 5252–5260.
- 2 I. Janik and G. N. R. Tripathi, J. Chem. Phys., 2013, 139, 014302.
- 3 J. Kim and A. A. Gewirth, J. Phys. Chem. B, 2006, 110, 2565–2571.
- 4 T. A. Galloway and L. J. Hardwick, J. Phys. Chem. Lett., 2016, 7, 2119–2124.
- Z. Peng, S. A. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák,
 D. Graham, J.-M. Tarascon and P. G. Bruce, *Angew. Chemie Int. Ed.*, 2011, 50, 6351–6355.
- 6 I. Aldous, *Thesis*.
- L. Johnson, C. Li, Z. Liu, Y. Chen, S. a. Freunberger, P. C. Ashok, B. B. Praveen, K.
 Dholakia, J.-M. Tarascon and P. G. Bruce, *Nat. Chem.*, 2014, 6, 1091–1099.
- 8 C. Li, O. Fontaine, S. a. Freunberger, L. Johnson, S. Grugeon, S. Laruelle, P. G. Bruce and M. Armand, *J. Phys. Chem. C*, 2014, **118**, 3393–3401.
- F. S. Gittleson, W. Ryu and A. D. Taylor, ACS Appl. Mater. Interfaces, 2014, 6, 19017– 19025.
- J. T. Frith, A. E. Russell, N. Garcia-Araez and J. R. Owen, *Electrochem. commun.*, 2014, 46, 33–35.
- C. Xia, M. Waletzko, L. Chen, K. Peppler, P. J. Klar and J. Janek, ACS Appl. Mater. Interfaces, 2014, 6, 12083–12092.
- D. Zhai, H.-H. Wang, J. Yang, K. C. Lau, K. Li, K. Amine and L. a Curtiss, *J. Am. Chem. Soc.*, 2013, 135, 15364–72.
- D. Zhai, H. Wang, K. C. Lau, J. Gao, P. C. Redfern, F. Kang, B. Li, E. Indacochea, U. Das, H.-H. H. H.-H. Sun, H.-H. H. H.-H. Sun, K. Amine and L. A. Curtiss, *J. Phys. Chem. Lett.*, 2014, 5, 2705–2710.
- 14 D. Zhai, K. C. Lau, H. Wang, J. Wen, D. J. Miller, J. Lu, F. Kang, B. Li, W. Yang, J. Gao,

E. Indacochea, L. A. Curtiss and K. Amine, Nano Lett., 2015, 15, 1041-1046.

- 15 J. Yang, D. Zhai, H.-H. Wang, K. C. Lau, J. A. Schlueter, P. Du, D. J. Myers, Y. Sun, L. a Curtiss and K. Amine, *Phys. Chem. Chem. Phys.*, 2013, 15, 3764–71.
- J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen,
 D. Zhai, Z. Chen, D. J. Miller, Y. Sub Jeong, J.-B. Park, Z. Zak Fang, B. Kumar, A.
 Salehi-Khojin, Y.-K. Sun, L. A. Curtiss and K. Amine, *Nature*, 2016, 529, 1–7.
- 17 A. C. Luntz and B. D. McCloskey, *Chem. Rev.*, 2014, **114**, 11721–11750.
- W. H. Ryu, F. S. Gittleson, M. Schwab, T. Goh and A. D. Taylor, *Nano Lett.*, 2015, 15, 434–441.
- 19 T. A. Galloway, L. Cabo-Fernandez, I. M. Aldous, F. Braga and L. J. Hardwick, *Faraday Discuss* 2017, 205, 469-490.
- 20 M. B. W. Kanzig, Phys. Kondens. Mater., 1973, 112, 107–112.
- 21 J. B. Bates, M. H. Brooker and G. E. Boyd, Chem. Phys. Lett., 1972, 16, 391–395.
- 22 A. Bösch and M. Känzig, *Helv. Phys. Acta*, 1975, **48**, 743–785.
- 23 I. M. Aldous and L. J. Hardwick, Angew. Chemie Int. Ed., 2016, 55, 8254–8257.
- P. Hartmann, C. L. Bender, M. Vračar, A. K. Dürr, A. Garsuch, J. Janek and P. Adelhelm, *Nat Mater*, 2013, 12, 228–232.
- I. Landa-Medrano, R. Pinedo, X. Bi, I. Ruiz de Larramendi, L. Lezama, J. Janek, K. Amine, J. Lu and T. Rojo, ACS Appl. Mater. Interfaces, 2016, 8, 20120–20127.
- 26 N. Zhao and X. Guo, J. Phys. Chem. C, 2015, 119, 25319–25326.
- N. Ortiz-Vitoriano, T. P. Batcho, D. G. Kwabi, B. Han, N. Pour, K. P. C. Yao, C. V.
 Thompson and Y. Shao-Horn, *J. Phys. Chem. Lett.*, 2015, 6, 2636–2643.
- I. I. Abate, L. E. Thompson, H.-C. Kim and N. B. Aetukuri, *J. Phys. Chem. Lett.*, 2016, 7, 2164–2169.
- J. Kim, H. Park, B. Lee, W. M. Seong, H.-D. Lim, Y. Bae, H. Kim, W. K. Kim, K. H.

Ryu and K. Kang, Nat. Commun., 2016, 7, 10670.

- 30 J. A. Creighton and E. R. Lippincott, J. Chem. Phys., 1964, 40, 1779.
- 31 B. J. C. Evans, *Chem. Commun.*
- 32 H. H. Eysel and S. Thym, Zeitschrift für Anorg. und Allg. Chemie, 1975, 411, 97–102.
- 33 S. A. Hunter-Saphir and J. A. Creighton, *J. Raman Spectrosc.*, 1998, **29**, 1997–1999.
- F. J. Blunt, P. J. Hendra and J. R. Mackenzie, *J. Chem. Soc. D Chem. Commun.*, 1969,
 242, 278.
- 35 D. T. Sawyer, T. S. Calderwood, K. Yamaguchi and C. T. Angelis, *Inorg. Chem.*, 1983,
 22, 2577–2583.
- 36 X. Ren and Y. Wu, J. Am. Chem. Soc., 2013, 135, 2923–2926.
- 37 P. D. C. Dietzel, R. K. Kremer and M. Jansen, *Chem. An Asian J.*, 2007, **2**, 66–75.
- 38 I. M. Aldous and L. J. Hardwick, J. Phys. Chem. Lett., 2014, 5, 3924–3930.
- 39 J. Li and R. J. Davis, J. Phys. Chem. B, 2005, 109, 7141–7148.
- 40 A. Band, A. Albu-Yaron, T. Livneh, H. Cohen, Y. Feldman, L. Shimon, R. Popovitz-Biro, V. Lyahovitskaya and R. Tenne, *J. Phys. Chem. B*, 2004, **108**, 12360–12367.
- 41 P. D. C. Dietzel, R. K. Kremer and M. Jansen, J. Am. Chem. Soc., 2004, 126, 4689–4696.
- 42 Q. Yu and S. Ye, J. Phys. Chem. C, 2015, 119, 12236–12250.
- G. W. E. Nathan Kornblum, J. Shamir, J. Binenboym, H. H. Claassen, G. W. E. Nathan Kornblum, J. Shamir, J. Binenboym and H. H. Claassen, *J. Am. Chem. Soc.*, 1968, 90, 6223–6224.
- 44 G. Herzberg, *Molecular spectra and molecular structure, Vol. 1*, 1950.
- A. J. Edwards, W. E. Falconer, J. E. Griffiths, W. A. Sunder and M. J. Vasile, *J. Chem. Soc. Dalt. Trans.*, 1974, 1129.
- 46 J. E. Griffiths, D. Distefano and W. A. Sunder, J. Raman Spectrosc., 1980, 9, 67–68.
- 47 J. E. Griffiths and W. A. Sunder, J. Chem. Phys., 1982, 77, 2753–2756.

- W. H. Fuchsman, C. H. Barlow, W. J. Wallace and W. S. Caughey, *Biochem. Biophys. Res. Commun.*, 1974, 61, 635–643.
- 49 A. Weber and E. A. McGinnis, J. Mol. Spectrosc., 1960, 4, 195–200.
- 50 J. C. McLennan and J. H. McLeod, *Nature*, 1929, **123**, 160–160.
- 51 M. F. Crawford, H. L. Welsh and J. H. Harrold, *Can. J. Phys.*, 1952, **30**, 81–98.
- 52 C. J. Cramer, W. B. Tolman, K. H. Theopold and A. L. Rheingold, *Proc. Natl. Acad. Sci.*,
 2003, 100, 3635–3640.
- A. Mukherjee, M. A. Cranswick, M. Chakrabarti, T. K. Paine, K. Fujisawa, E. Münck, L.
 Que, E. Münck and L. Que, *Inorg. Chem.*, 2010, 49, 3618–3628.
- 54 S. Hong, K. D. Sutherlin, J. Park, E. Kwon, M. a Siegler, E. I. Solomon and W. Nam, *Nat. Commun.*, 2014, 5, 5440.
- 55 Y. R. Goo, A. C. Maity, K. Bin Cho, Y. M. Lee, M. S. Seo, Y. J. Park, J. Cho and W. Nam, *Inorg. Chem.*, 2015, 54, 10513–10520.
- 56 C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee and W. B.
 Tolman, *Chem. Rev.*, 2017, **117**, 2059–2107.
- 57 O. Gerbig, Stuttgart, 2014.
- E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M.
 T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt and L. Tian, *Chem. Rev.*, 2014, 114, 3659–3853.
- 59 T. Shibahara and M. Mori, *Bull. Chem. Soc. Jpn.*, 1978, **51**, 1374–1379.
- 60 L. M. Mirica, X. Ottenwaelder and T. D. P. Stack, *Chem. Rev.*, 2004, **104**, 1013–1046.
- 61 H. Matsuta and K. Hirokawa, Appl. Surf. Sci., 1987, 27, 482–486.
- 62 J. et al Eickmans, *Surf. Sci.*, 1983, **127**, 153–164.
- J. Oxley, J. Smith, J. Brady, F. Dubnikova, R. Kosloff, L. Zeiri and Y. Zeiri, *Appl. Spectrosc.*, 2008, 62, 906–915.

- D. Lin-Vien, N. B. Colthup, W. G. Fateley and J. G. Grasselli, in *The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules*, 1991, pp. 68–72.
- 65 R. C. Taylor and P. C. Cross, J. Chem. Phys., 1956, 24, 41–44.
- 66 A. Igeklint, Lund, 2008.
- 67 S. Venkateswaran, *Nature*, 1931, 127, 406–406.
- D. de Waal, K. Range, M. Konigstein and W. Kiefer, J. Raman Spectrosc., 1998, 29, 109–113.
- Y. G. Zhu, Q. Liu, Y. Rong, H. Chen, J. Yang, C. Jia, L.-J. Yu, A. Karton, Y. Ren, X. Xu,
 S. Adams and Q. Wang, *Nat. Commun.*, 2017, 8, 14308.
- S. Hy, F. Felix, J. Rick, W.-N. Su and B. J. Hwang, J. Am. Chem. Soc., 2014, 136, 999–1007.
- J. Winterlik, G. H. Fecher, C. A. Jenkins, S. Medvedev, C. Felser, J. Kübler, C. Mühle,
 K. Doll, M. Jansen, T. Palasyuk, I. Trojan, M. I. Eremets and F. Emmerling, *Phys. Rev. B*, 2009, **79**, 214410.
- 72 K. Takechi, S. Higashi, F. Mizuno, H. Nishikoori, H. Iba and T. Shiga, *ECS Electrochem. Lett.*, 2012, **1**, A27–A29.
- G. M. Veith, J. Nanda, L. H. Delmau and N. J. Dudney, J. Phys. Chem. Lett., 2012, 3, 1242–1247.
- S. Higashi, Y. Kato, K. Takechi, H. Nakamoto, F. Mizuno, H. Nishikoori, H. Iba and T. Asaoka, *J. Power Sources*, 2013, 240, 14–17.
- 75 S. Riyadi, *Magnetic order from molecular oxygen anions*, 2012.
- 76 T. Livneh, A. Band and R. Tenne, J. Raman Spectrosc., 2002, 33, 675–676.
- 77 M. H. Gubelmann and A. F. Williams, *The structure and reactivity of dioxygen complexes of the transition metals*, 1984.

- 78 L. Vaska, Acc. Chem. Res., 1976, 9, 175–183.
- M. G. Mason, P. Nicholls and C. E. Cooper, *Biochim. Biophys. Acta*, 2014, **1837**, 1882–91.