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I. THE VIBRATIONAL SELF-CONSISTENT FIELD (VSCF) THEORY

The vibrational self-consistent field theory[1–6] is one of the most used methodology

to compute anharmonic vibrational spectra of polyatomic molecules. The VSCF invokes

single particle approximation for the vibrational many-body problem. Here, the vibrational

wave-function of a N mode system is written as a product of N one mode functions

Φq1,q2,....,qN = Πiφ
i
ni

(qi). (1)

Each of such one mode function, usually refereed as modals, are expanded in an orthonor-

mal basis functions (usually harmonic oscillator basis)

φini
=

∑
m

χimCmn. (2)

The modals are then variationally optimized by minimizing the expectation values of

vibrational Hamiltonian with respect to these basis functions. This leads to the working

equations for the optimized modals

(hieff − ε(i)n )φini
(qi) = 0. (3)

Here hieff is the effective one-body Hamiltonian for the ith mode whose potential is generated

by averaging the non-separable many-body Hamiltonian over other modes. The Eq. 3

are solved in self-consistent manner. Once the optimized modals are obtained, the VSCF

energy of a particular vibrational state is obtained as the expectation value of the vibrational

Hamiltonian with the optimized wavefunctions for that state.

II. THE VIBRATIONAL COUPLED CLUSTER METHOD

There are two different representations possible to formulate the vibrational coupled

cluster method. One is the basis set representation, formulated and used extensively by

Christiansen and co-workers[5, 7, 8]. The second one is the bosonic representation developed

and used by Prasad and co-workers[9–11]. We used bosonic representation in this study.

In the formulation of the VCCM in bosonic representation, first the effective harmonic

oscillator (EHO) approximation[6, 9, 10] is invoked to get optimized reference function for
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the vibrational ground-state. In the EHO approximation, a product of N Gaussian functions

Φ0 = exp(−
∑
i

ωi(qi − q0i )2/2), (4)

and is variationally optimized with respect to the ωi and q0i to obtain the vibrational ground-

state wavefunction for a molecule with N vibrational modes. The harmonic oscillator ladder

operators are then defined with respect to this optimized Φ0

ai =

√
ωi
2

(qi − q0i +
1

ωi

q

dqi
) (5)

a†i =

√
ωi
2

(qi − q0i −
1

ωi

q

dqi
) (6)

We note that the optimized reference function Φ0 is the vacuum state for ai.

Next, the VCCM wavefunction is parametrized with a double-exponential wave operator

operating on the optimized vacuum state Φ0,

|Ψg〉 = e−Seσ|Φ0〉. (7)

The cluster operators S and σ are expanded as

S =
∑
i

sia
†
i +

∑
i≤j

sija
†
ia
†
j +

∑
i≤j≤k

sijka
†
ia
†
ja
†
k + . . . (8)

σ =
∑
i

σiai +
∑
i≤j

σijaiaj +
∑
i≤j≤k

σijkaiajak + . . . (9)

Next, the subsystem embedding condition[12] is used to decouple the equations for the σ

matrix elements from the equations for the S matrix elements. The working equations for

the cluster matrix element S, ground state energy Eg and the cluster matrix elements σ are

given by

〈Φe|Heff
1 |Φ0〉 = 0, (10)

〈Φ0|Heff
1 |Φ0〉 = Eg, (11)

〈Φ0|Heff
2 |Φe〉 = 0. (12)

Here, Φe are the excited states, and Heff
1 and Heff

2 are the similarity transformed effective

operators, defined as

Heff
1 = e−SHeS (13)

Heff
2 = eσe−SHeSe−σ (14)
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The effective Hamiltonians Heff
1 and Heff

2 are evaluated using the Baker-Campbell-

Hausdorff expansion. We used a maximum of four-body expansion for both the cluster

operator S and σ in Eqs. 8. Since the vibrational Hamiltonian with QPES has at-most

four-body terms, the effective Hamiltonian Heff
1 and Heff

2 are also restricted to have up to

four-body operators.

Finally, the coupled cluster linear response theory[13, 14] is used to calculate the vibra-

tional excitation energies. In this approach, the effective Hamiltonian Heff
2 is diagonalized

in the space of excited states of EHO. The excitation energies are obtained directly as the

eigenvalues of Heff
2 . The configuration space for the Heff

2 is defined by the excited state

space with at most four quanta in all the modes.

A. The second order vibrational perturbation theory

The second order vibrational perturbation theory (VPT2) is another popular method

to calculate the anharmonic vibrational spectra of polyatomic molecules. Barone and co-

workers[15–18] implemented a modified version of VPT2 method in Gaussian09. Here, the

harmonic part of the Watson Hamiltonian is taken as zeroth-order Hamiltonian and the cubic

and quartic terms are treated as perturbations. The working equation for the vibrational

energy is given by

E(n) = χ0 +
∑
i

ωi(ni +
1

2
) +

∑
i≤j

χij(ni +
1

2
)(nj +

1

2
) (15)

Here, ωi are the harmonic frequencies, ni the vibrational states and χ0 and χij are the zero

point contribution and anharmonic constants. These parameters are derived from the cubic,

quartic and Coriolis coupling terms of the PES[15]. The working equation for the vibrational

fundamentals transitions is[15]

νi = ωi + 2χi +
∑
i≤j

χij. (16)

It was shown that the computation of the anharmonic constants χ0 and χij encounters

singularities in the presence of strong vibrational resonances in the molecule. To overcome

such singularity problem, a variational calculation is carried out with the states that are

involved in the resonances[15, 18].
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Table S1. The quartic force constants of bending modes of ethylene with different basis sets with

RHF method (units are in cm−1).

Basis set F7777 F4444 F11,11,11,11

6-311++G(3d,3p) 153 98 46

6-311+G(3d,3p) 152 98 48

6-311G(3d,3p) 160 95 51

6-311++G(2d,2p) 153 99 41

6-311G(2d,2p) 154 94 41

6-31++G(d,p) 151 102 41

6-31+G(d,p) 145 100 41

6-31G(d,p) 155 96 43

cc-pVDZ 156 96 41

aug-cc-pVDZ 128 104 45

cc-pVTZ 146 95 41

aug-cc-pVTZ 148 197 42
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Table S2. The occupied molecular orbitals (OMO) of ethylene with different basis sets

Basis set HOMO (b3u) OMO (b3g) OMO (ag) OMO (b2u) OMO ( b1u) OMO (ag)

6-31G** -0.370102 -0.502464 -0.580785 -0.636963 -0.788730 -1.027104

6-31+G** -0.374333 -0.509599 -0.587655 -0.644106 -0.795466 -1.034369

6-31++G** -0.374231 -0.509520 -0.587571 -0.644006 -0.795395 -1.034294

6-311G(2d,2p) -0.374458 -0.506484 -0.585254 -0.642544 -0.791097 -1.031645

6-311+G(2d,2p) -0.376173 -0.509940 -0.588832 -0.645954 -0.794552 -1.035179

6-311++G(2d,2p) -0.376164 -0.509945 -0.588829 -0.645942 -0.794552 -1.035165

6-311G(3d,3p) -0.374359 -0.506508 -0.585400 -0.641877 -0.791307 -1.031094

6-311+G(3d,3p) -0.375806 -0.509843 -0.588683 -0.645101 -0.794567 -1.034282

6-311++G(3d,3p) -0.375799 -0.509834 -0.588674 -0.645095 -0.794558 -1.034282

cc-pVDZ -0.37155 -0.50200 -0.57902 -0.63460 -0.78636 -1.02633

aug-cc-pVDZ -0.37323 -0.50697 -0.58329 -0.63924 -0.79154 -1.03019

cc-pVTZ -0.37642 -0.50726 -0.58623 -0.64361 -0.79212 -1.03316

aug-cc-pVTZ -0.37705 -0.50872 -0.58765 -0.64489 -0.79349 -1.03453

cc-pVQZ -0.37765 -0.50819 -0.58779 -0.64521 -0.79298 -1.03485

aug-cc-pVQZ -0.37782 -0.50875 -0.58831 -0.64563 -0.79349 -1.03528

ANO -0.37788 -0.50837 -0.58803 -0.64530 -0.79306 -1.03489
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Figure S1. Changes of the RHF and MP2 energies with 6-31G** and 6-31++G** basis sets from

the MP2 equilibrium along CH2 scissor mode normal coordinate (q3).
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Figure S2. Changes of the RHF and MP2 energies with 6-31G** and 6-31++G** basis sets from

the MP2 equilibrium along CH2 twist mode normal coordinate (q4).
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Figure S3. Changes of the RHF and MP2 energies with cc-pVTZ and aug-cc-pVTZ basis sets from

the MP2 equilibrium along CH2 twist mode normal coordinate (q4).

9



 0

 1

 2

 3

 4

 5

 6

 0  0.05  0.1  0.15  0.2

[E
(q

7
)-

E
e
q
] 
in

 m
ill

ih
a
rt

re
e

Displacement along OPB bending normal coordinate (q7)

HF/cc-pVTZ
MP2/cc-pVTZ
HF/acc-pVTZ

MP2/acc-pVTZ

Figure S4. Changes of the RHF and MP2 energies with cc-pVTZ and aug-cc-pVTZ basis sets from

the MP2 equilibrium along CH2 wagging mode normal coordinate (q7).
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Figure S5. Changes of energies from equilibrium along out-of-plane bending mode normal coordi-

nate (q7) at the different level theories with the basis sets having no diffused function.
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Figure S6. Changes of energies from equillibrium along out-of-plane bending mode normal coordi-

nate (q7) at the different level theories with the basis sets having diffused functions.

12



[1] J. M. Bowman, J. Chem. Phys. 68, 608 (1978).

[2] J. M. Bowman, Acc. Chem. Res. 19, 202 (1986).

[3] R. B. Gerber, G. M. Chaban, B. Brauer, and Y. MIller, in Theory and Applications of

Computational Chemistry: The first fourty years, edited by C. E. Dykstra, G. Frenking,

K. Kim, and G. Suceria (Elsevier, Tokyo, 2005) Chap. 9, pp. 165–194.

[4] D. G. Carney, L. L. Sprandel, and C. W. Kern, Adv. Chem. Phys. 37, 305 (1978).

[5] O. Christiansen, Phys. Chem. Chem. Phys. 9, 2942 (2007).

[6] T. K. Roy and M. Durga Prasad, J. Chem. Sci. 121, 805 (2009).

[7] O. Christiansen, J. Chem. Phys. 120, 2149 (2004).

[8] P. Seidler, M. B. Hansen, and O. Christiansen, J. Chem. Phys. 128, 154113 (2008).

[9] V. Nagalakshmi, V. Lakshminarayana, G. Sumithra, and M. Durga Prasad, Chem. Phys.

Lett. 217, 279 (1994).

[10] S. Banik, S. Pal, and M. Durga Prasad, J. Chem. Phys. 129, 134111 (2008).

[11] S. Banik, S. Pal, and M. Durga Prasad, J. Chem. Phys. 137 (2012), 10.1063/1.4753422.

[12] D. Mukherjee, Pramana 12, 203 (1979).

[13] D. Mukherjee and P. Mukherjee, Chem. Phys. 39, 325 (1979).

[14] H. J. Monkhorst, Int. J. Quantum Chem. 12, 421 (1977).

[15] V. Barone, J. Chem. Phys. 120, 3059 (2004).

[16] V. Barone, J. Chem. Phys. 122, 014108 (2005).

[17] M. Biczysko, P. Panek, G. Scalmani, J. Bloino, and V. Barone, J. Chem. Theory Comput. 6,

2115 (2010).

[18] M. Piccardo, J. Bloino, and V. Barone, International Journal of Quantum Chemistry 115,

948 (2015).

13


