Supporting Information

Key Determinants Governing a Metal-Bound Water is Deprotonated in Proteins

Cédric Grauffel^{1*}, and Carmay Lim^{1,2,*}

¹Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan ²Department of Chemistry, National Tsinghua University, Hsinchu 300, Taiwan

Keywords: Zn-bound hydroxide, Zinc, pKa, density functional theory, continuum calculations

E-mail: cedric@ibms.sinica.edu.tw or carmay@gate.sinica.edu.tw

Supplementary Table S1. Number of 90°, 109.5°, 120°, or 180° angles for an ideal geometry as a function of the number of metal-bound ligands.

Geometry	# of	# of 90°	# of 109.5°	# of 120°	# of 180°
	ligands	angles	angles	angles	angles
O _h	6	12			3
	5	8			2
	4	5			1
	4	4			2
	3	2			1
	3	3			
	2	1			
	2				1
T _d	4		6		
	3		3		
	2		1		
TBP	5	6		3	1
or	3			3	
ТР	2			1	

Figure S1. Effect of changes in the Zn²⁺–N distances on pK_w(ϵ) of Zn-HHHw sites. The grey region corresponds to ±1 pK_w unit of the Zn-HHHw pK_w values; the mean equilibrium Zn²⁺–N distances is 2.01 Å for HHHw and 2.03 Å for HHHh in water, which remained the same when the HHH(w/h) systems were freely optimized at ϵ = 10. The blue, orange and red curves correspond to Zn²⁺–N distances that deviate from equilibrium by –0.05, 0.05, and 0.10 Å, respectively.

Figure S2. Effect of the carboxylate orientation in DHHw sites on the Zn²⁺-pK_w(\epsilon). To see how the carboxylate orientation may affect the pK_w in DHHw sites, the distance between the non-coordinating carboxylate O and the water/hydroxide O (denoted as *d*') was frozen at values ranging from 2.8 to 5.0 Å in increments of 0.2 Å. The blue, green, and red curves were derived by constraining the distance *d'* to 2.8, 3.2 and 5.0 Å, respectively. The optimized structures with *d'* constrained at these values are shown on the right. The grey area corresponds to the average pK_w±1 values obtained for *d'* greater than 2.8 Å. For various orientations of the carboxylate relative to the Zn²⁺-bound water/hydroxide, the pK_w exceeds 8, and when the metal-free carboxylate O is close to the hydroxide O (*d'* = 2.8 Å), the pK_w curves shifts upwards by ~3 units

Figure S3. Effect of substituting a His with water on the $pK_w(\varepsilon)$ of $[Zn-HHHw]^{2+}$, $[Zn-DHHw]^+$, $[Zn-CHHw]^+$, and $[Zn-CCHw]^0$ complexes. The grey region corresponds to the $pK_w\pm 1$ values of the unsubstituted complexes. The pK_w curves in each panel were derived from fully optimized structures shown on the right.

Figure S4. Effect of HBs from 2^{nd} -shell backbone(s) to the Zn^{2+} -bound His/Cys in HHHw, CHHw, and CCHw sites on the Zn^{2+} -pK_w(ϵ). Deviations from the pK_w±1 values of the isolated [Zn-HHHw]²⁺, [Zn-CHHw]⁺, and [Zn-CCHw]⁰ complexes (grey region) due to backbone H-bonding interactions are shown by a color gradient. The fully optimized structures of the water or OH⁻-bound Zn²⁺ complexes in the presence of one or two backbone amides are shown on the right side.

Figure S5. Effect of the carboxylate-binding mode in DHHw sites on the $Zn^{2+}-pK_w(\varepsilon)$. The blue, green, and red curves were derived by constraining the distance d'' between the metal-free carboxylate O and the Zn^{2+} to 2.25, 2.85 and 3.85 Å, respectively. The optimized structures with d'' constrained at these values are shown on the right. The grey area corresponds to the average pK_w±1 values obtained for d'' ranging between 2.25 and 2.85 Å, using an increment of 0.05 Å.

Figure S6. The pK_w values of pairs of Zn^{2+} complexes with and without methyl groups