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Theory of the stochastic frequency modulation (SFM) model

The complex susceptibility  can be expressed as the Fourier-Laplace transform of the response 𝜒̃(𝜔)

function ,𝜙(𝑡)

𝜒̃(𝜔) = ∆𝜒
∞

∫
0

𝑒 ‒ 𝑖𝜔𝑡𝜙(𝑡)𝑑𝑡 (S1)

where  is the strength. In the high temperature limit, the Kubo's theorem allows us to introduce the ∆𝜒

relaxation function  to eqn (S1) as follows:1𝜓(𝑡)

𝜒̃(𝜔) = ∆𝜒(1 ‒ 𝑖𝜔
∞

∫
0

𝑒 ‒ 𝑖𝜔𝑡𝜓(𝑡)𝑑𝑡) (S2)

Following a stochastic theory of line shape developed by Kubo et al.,2 in which the frequency of the system 

is assumed to result from stochastic frequency modulation (SFM), the randomly perturbed oscillating 

frequency  is described as𝜔(𝑡)

𝜔(𝑡) = 𝜔0 + 𝛿𝜔(𝑡) (S3)

where  is the homogeneously oscillating frequency of the system and  is the instantaneous 𝜔0 𝛿𝜔(𝑡)

frequency shift. If frequency modulation is assumed to be Markovian, a stationary process  is 〈𝛿𝜔(𝑡)〉 = 0
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satisfied.2 Since the fluctuation frequency for liquids can be treated classically, we can make the following 

semiclassical approximation to the relaxation function.3,4

𝜓(𝑡) = 〈𝑒𝑥𝑝[ ‒ 𝑖
𝑡

∫
0

𝛿𝜔(𝑡')𝑑𝑡']〉𝑒
‒ 𝑖𝜔0𝑡

(S4)

Given that the cumulant expansion of the angular bracket term is given by

〈𝑒𝑥𝑝[ ‒ 𝑖
𝑡

∫
0

𝛿𝜔(𝑡')𝑑𝑡']〉 = 𝑒𝑥𝑝[ ‒ 𝑖
𝑡

∫
0

〈𝛿𝜔(𝑡')〉𝑑𝑡' ‒
1
2

𝑡

∫
0

𝑑𝑡'1

𝑡

∫
0

𝑑𝑡'2〈𝛿𝜔(𝑡'1)𝛿𝜔(𝑡'2)〉 + ...] (S5)

For a stationary process, only the second term is non-zero. Eventually,  is represented in the form𝜓(𝑡)

𝜓(𝑡) = 𝑒𝑥𝑝[ ‒ 𝑖𝜔0𝑡 ‒
𝑡

∫
0

𝑑𝑡'(𝑡 ‒ 𝑡')〈𝛿𝜔(𝑡')𝛿𝜔(0)〉] (S6)

If Markov type frequency modulation is considered, the time-correlation function of the fluctuation 

frequency  is expressed with the Doob's theorem,5𝛿𝜔

〈𝛿𝜔(𝑡)𝛿𝜔(0)〉 = 𝜔∆
2𝑒 ‒ Γ|𝑡| (S7)

where,  is the amplitude and  is the rate of the frequency modulation process. According to the law of 𝜔∆ Γ

equipartition of rotational kinetic energy, the amplitude is related with the temperature  and the moment 𝑇

of inertia , via a relation . Given that the modulation process is rotational, this relation is 𝐼 𝐼𝜔2 2 = 𝑘𝐵𝑇 2

reduced to .6 Furthermore,  is characterized by the inverse of the correlation time of 𝜔∆
2 = 𝑘𝐵𝑇 𝐼 Γ

modulation. Substituting eqn (S7) into (S6), the final form of the relaxation function 𝜓(𝑡)

𝜓(𝑡) = 𝑒𝑥𝑝[ ‒ 𝑖𝜔0𝑡 ‒ (𝜔∆

Γ )2(𝑒 ‒ Γ𝑡 + Γ𝑡 ‒ 1)] (S8)

is obtained.2 As practical examples of the SFM, let us consider the continuous (i.e. Gauss-Markov) and 

discrete (i.e. two-state jump) processes below.

In the first example of the continuous SFM process, we assume a Gaussian probability distribution 

 such that that the fluctuation frequency  can take continuous values. If we define the standard 𝑃(𝛿𝜔) 𝛿𝜔

deviation as the amplitude of modulation,  is expressed as:4𝑃(𝛿𝜔)

𝑃(𝛿𝜔) =
1

2𝜋𝜔∆
𝑒

‒
𝛿𝜔2

2𝜔∆
2 (S9)

By substituting eqn (S8) into (S2), the complex susceptibility of the continuous SFM, , can be 𝜒̃𝑐𝑆𝐹𝑀(𝜔)

expressed by the continued fraction.2,7

S2



𝜒̃𝑐𝑆𝐹𝑀(𝜔) = ∆𝜒{1 ‒ 𝑖𝜔
1

𝑖(𝜔 ‒ 𝜔0) +
𝜔∆

2

𝑖(𝜔 ‒ 𝜔0) + Γ +
2𝜔∆

2

𝑖(𝜔 ‒ 𝜔0) + 2Γ + …

} (S10)

Aiming to quantitatively characterize the impact of the stochastic modulation process, it is useful to 

introduce the modulation degree  as,7-9𝛼𝐾

𝛼𝐾 =
𝜔∆

Γ
(S11)

This quantity is otherwise known as the Kubo number. In the fast modulation limit, where random 

modulation is fast such that , the relaxation function of eqn (S8) can be rewritten as𝛼𝐾 ≪ 1

𝜓(𝑡) ≈ 𝑒𝑥𝑝[ ‒
𝜔∆

2

Γ
𝑡]𝑒

‒ 𝑖𝜔0𝑡
(S12)

indicating that the random frequency modulation part decays as the single exponential characterized by the 

correlation time of .4,7,8 Such a single exponential  is reduced to the Debye relaxation (𝜏 = Γ 𝜔∆
2

𝜓(𝑡)

) and damped harmonic oscillator ( ) line shapes in the frequency domain counterpart 𝜔0 = 0 𝜔0 ≠ 0

. Now assume the slow modulation limit (i.e. ), the relaxation function can be re-𝜒̃𝑐𝑆𝐹𝑀(𝜔) 𝛼𝐾 ≫ 1

expressed by truncating expansion of the exponential term of eqn (S8) up to the second-order:

𝜓(𝑡) ≈ 𝑒𝑥𝑝[ ‒ (𝜔∆

Γ )2{(1 ‒ Γ𝑡 +
Γ2𝑡2

2 ) + Γ𝑡 ‒ 1}]𝑒
‒ 𝑖𝜔0𝑡

= 𝑒𝑥𝑝[ ‒
𝜔∆

2𝑡2

2 ]𝑒
‒ 𝑖𝜔0𝑡

(S13)

Fourier transform of eqn (S13) yields an inhomogeneous Gaussian line shape in the imaginary part of 

, projecting the probability distribution . The  dependence of the SFM resonances 𝜒̃𝑐𝑆𝐹𝑀(𝜔0 ≠ 0) 𝑃(𝛿𝜔) 𝛼𝐾

is modeled in Fig. S1. It is clear that the transition from fast modulation (i.e. 0.2) to slow modulation 𝛼𝐾 =

(i.e. 5) gradually shifts to the symmetric and broad dispersion, accompanying gradual blue shifts.10 𝛼𝐾 =

S3
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Figure S1 Oscillatory-type model complex susceptibilities of a continuous SFM process with the fluctuation 
frequency 5 THz.  dependence: 0.1, 1 and 10. The inset shows the relaxation 𝜔∆ 2𝜋 =  𝛼𝐾 𝛼𝐾 =  𝛼𝐾 =  𝛼𝐾 =  

functions of the corresponding susceptibilities.



Between these limits, the resonance grows motional narrowing as  increases.𝛼𝐾

Unless the system is involved in the overdamped limit, eqns (S12) and (S13) hold for the long-time (

) and short-time ( ) limits, respectively. The physical meaning of this coincidence is that 𝑡 ≫ Γ ‒ 1 𝑡 ≪ Γ ‒ 1

the somewhat inertial decay behavior turns to exponential after a time scale that is determined by .11 Eqn Γ

(S13) conveys that a smaller  leads to more significantly inertial behavior at short times.𝜔∆

As the second example, let us consider a discrete two-state jump process in which the fluctuation 

frequency takes the discrete values, namely , so that the perturbed frequency of the system 𝛿𝜔 =± 𝜔𝛿

realizes only  and  with equal probabilities. If further assume a process composed of 𝜔0 + 𝜔𝛿 𝜔0 ‒ 𝜔𝛿

discrete -independent frequency modulation, in which the fluctuation frequency  can take discrete 𝑁 𝛿𝜔

values such as  (  is integer), the quantity  is associated with the 𝛿𝜔 =± 𝜔𝛿, ± 2𝜔𝛿, … , ± 𝑁𝜔𝛿 𝑁 𝜔𝛿

amplitude  as:7𝜔∆

𝜔∆
2 = 𝑁𝜔𝛿

2 (S14)

According to eqns (S8) and (S14), the relaxation function of the discrete -independent SFM process is 𝑁

given by

𝜓(𝑡) = {cosh (Γ𝑡
2𝑎) + 𝑎sinh (Γ𝑡

2𝑎)}𝑁𝑒𝑥𝑝[ ‒ 𝑖𝜔0𝑡 ‒
𝑁Γ𝑡

2 ] (S15)
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where .7,8 Note that the limit  of  corresponds to the continuous process. By 𝑎 = (1 ‒ 4𝛼𝐾
2) ‒ 1 2

𝑁→∞ 𝜓(𝑡)

substituting eqn (S15) to (S2), one can finally obtain the discrete SFM  as follows,7,8𝜒̃𝑑𝑆𝐹𝑀(𝜔)

𝜒̃𝑑𝑆𝐹𝑀(𝜔) = ∆𝜒{1 ‒ 𝑖𝜔
1

𝑖(𝜔 ‒ 𝜔0) +
𝑁𝜔𝛿

2

𝑖(𝜔 ‒ 𝜔0) + Γ +
2(𝑁 ‒ 1)𝜔𝛿

2

𝑖(𝜔 ‒ 𝜔0) + 2Γ + …
𝑁𝜔𝛿

2

𝑖(𝜔 ‒ 𝜔0) + 𝑁Γ

} (S16)

The simplest discrete process, namely the two-state jump process, can be achieved by setting . Its 𝑁 = 1

relaxation function is expressed as  and the 𝜓(𝑡) = {cosh (Γ𝑡 2𝑎) + 𝑎sinh (Γ𝑡 2𝑎)}𝑒𝑥𝑝[𝑖𝜔0𝑡 ‒ Γ𝑡 2]

resulting  is reduced to,𝜒̃𝑑𝑆𝐹𝑀(𝜔)

𝜒̃𝑑𝑆𝐹𝑀(𝜔) = ∆𝜒{1 ‒ 𝑖𝜔
1

𝑖(𝜔 ‒ 𝜔0) +
𝜔𝛿

2

𝑖(𝜔 ‒ 𝜔0) + Γ

} (S17)

Fig. S2 shows the modeled complex susceptibilities of the resonant-type discrete SFM function at 

various  and . From Fig. S2(a,b), it can be seen that the  sharp resonant dispersions appears at 𝛼𝐾 𝑁 𝑁 + 1

S5

Figure S2 Oscillatory-type model complex susceptibilities of a discrete SFM process with the center frequency 
10 THz and the fluctuation frequency 5 THz. (a,b)  dependence: 0.1, 1 and 𝜔0 2𝜋 =  𝑁𝜔𝛿 2𝜋 =  𝛼𝐾 𝛼𝐾 = 𝛼𝐾 =  

10, with 3 fixed. (c,d) Number of process dependence: 1, 5 and 20, with 0.5 𝛼𝐾 = 𝑁 =  𝑁 =  𝑁 =  𝑁 =  𝛼𝐾 =  

fixed.



regular frequency intervals of  in the case of slow modulation ( 10). As the correlation with 𝜔𝛿 𝜋 𝛼𝐾 =

random frequency modulation is weakened until , the markedly sharp dispersions are broadened and 𝛼𝐾→1

eventually merge into a single peak. In fast modulation ( 0.1), the resonant dispersion looks like 𝛼𝐾 =

homogeneous since the original resonant band shape is hardly affected by modulations. If  is fixed, 𝛼𝐾 = 5

the results in Fig. S2(c,d) indicates that the increase in the number of process from  to  shows 𝑁 = 1 𝑁 = 20

an increasing resemblance to the Gaussian band shape, because increasing  eventually goes into the 𝑁

continuous frequency modulation process. In the framework of the relaxation-type discrete SFM model, the 

 dependence (0~0.3) and the  dependence (1 and 50) are modeled in Fig. S3. The  dependence 𝛼𝐾 𝑁 𝛼𝐾

displayed in Fig. S3(a,b) shows that the deviation from the Debye model in the high-frequency tail 

becomes greater as  increases. On the other hand, under the fast modulation limit, we found the complex 𝛼𝐾

susceptibilities do not depend on  as depicted in Fig. S3(c,d). Therefore, it has no objection to fix  𝑁 𝑁 = 1

for simplicity as far as the fast modulation limit is satisfied. If we assume a  relaxation mode 𝑁 = 1

( ), eqn (S17) is further simplified to,𝜔0 = 0

𝜒̃𝑑𝑆𝐹𝑀(𝜔) =
∆𝜒𝜔𝛿

2

𝜔𝛿
2 ‒ 𝜔2 + 𝑖𝜔Γ

(S18)

In the fast modulation limit where  is held, we can approximate eqn (S18) as follows.𝜏 ≈ Γ 𝜔𝛿
2

𝜒̃𝑑𝑆𝐹𝑀(𝜔) ≈
∆𝜒

1 ‒ (𝜔 𝜔𝛿)2 + 𝑖𝜔𝜏
(S19)
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Figure S3 Relaxation-type model complex susceptibilities of a discrete SFM process with the fluctuation 
frequency 2.5 THz. (a,b)  dependence from 0 (Debye limit) to 0.3, with 1 𝑁𝜔𝛿 2𝜋 =  𝛼𝐾 𝛼𝐾 =  𝛼𝐾 =  𝑁 =  
fixed. 6.5 is adopted for the real part. (c,d) Number of process dependence: 1 and 50, with 𝜀∞ =  𝑁 =  𝑁 =  

0.05 fixed. 2.0 is adopted for the real part.𝛼𝐾 =  𝜀∞ =  



This equation is nothing but the Rocard model, which considers small inertial effects of non-interacting (

) rigid dipoles.121 Γ ≪ 1

In the discrete SFM model, further generalization of the model can be made to “unequal” probabilities 

by introducing an asymmetrical parameter : i.e. probabilities of the perturbed frequencies are  for 𝜎 (1 ‒ 𝜎) 2

 and  for .13 Nevertheless, as is the case for the liquid water relaxations, the 𝜔0 + 𝜔𝛿 (1 + 𝜎) 2 𝜔0 ‒ 𝜔𝛿

parameter  is hardly affects the  line shape under the fast modulation limit.8𝜎 𝜒̃𝑑𝑆𝐹𝑀(𝜔)

Libration mode:  𝜒̃𝐿(𝜔)

Aiming to confirm the validity of our best-fitted libration mode, , the fitted 𝜒̃𝐿(𝜔) = 𝜒̃𝐿1(𝜔) + 𝜒̃𝐿2(𝜔)

result is compared with the experimental one exposed by subtracting the other relaxation and vibration 

susceptibilities from the dielectric constant of water,

𝜒̃𝐿(𝜔) = 𝜀̃(𝜔) ‒ (𝜒̃𝑠𝑙𝑜𝑤(𝜔) + 𝜒̃𝑓𝑎𝑠𝑡(𝜔) + 𝜒̃𝐵(𝜔) + 𝜒̃𝑆(𝜔) + 𝜀∞) (S20)

where : the slow relaxation, : the fast relaxation, : the intermolecular bending, 𝜒̃𝑠𝑙𝑜𝑤(𝜔) 𝜒̃𝑓𝑎𝑠𝑡(𝜔) 𝜒̃𝐵(𝜔)

: the intermolecular stretching and : the real part of the high-frequency limit. The obtained 𝜒̃𝑆(𝜔) 𝜀∞

experimental result (gray circles) is compared with the best-fitted one (black dot line) in Fig. S4.

Fig. S4(a) shows the dual-DHO description under the Debye-type  and , i.e. eqn (1). It 𝜒̃𝑠𝑙𝑜𝑤(𝜔) 𝜒̃𝑓𝑎𝑠𝑡(𝜔)
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Figure S4 Imaginary part of . (a) Dual-DHO and (b) dual-Gaussian description 𝜒̃𝐿(𝜔) = 𝜒̃𝐿1(𝜔) + 𝜒̃𝐿2(𝜔)

under the Debye-type relaxation model (eqn.1). (c) H2O and (d) D2O libration mode described by the continuous 
stochastic frequency modulation model when the discrete relaxation model (eqn.4) is used as  and 𝜒̃𝑠𝑙𝑜𝑤(𝜔)

 modes. The inset in (d) shows the three inertial principal axes contributing to the libration.𝜒̃𝑓𝑎𝑠𝑡(𝜔)



can be noticed that the dual-DHO shapes the ambiguously split peak around 18 THz (600cm-1) and the 

high-frequency tail of the libration band (typically above 20 THz) is ill replicated. On the other hand, 

replacement of the dual-DHO function to the dual-Gaussian compensated for these deficiencies as shown in 

Fig. S4(b), suggesting that the water libration mode is composed of two sub-bands undergoing 

inhomogeneous broadening, as expected previously.14 The continuous SFM fitting of the libration band by 

the use of eqn (5) is exhibited in Fig. S4(c,d). Please keep in mind that the exposed experimental  in 𝜒̃𝐿(𝜔)

Fig. S4(c) is not identical to that in Fig. S4(a), because the discrete SFM relaxation in eqn (5) differs from 

the Debye typically above 3 THz. The obtained best-fitted parameters are summarized in Table S1.

Hindered translation modes:  and 𝜒̃𝐵(𝜔) 𝜒̃𝑆(𝜔)

Although purely hindered translational motions in a system of non-polarizable molecules involves no 

direct fluctuations of the total dipole moment,15 computational studies has revealed that modulation with 

the intramolecular H-O-H (or D-O-D) bend and the intermolecular charge flux provokes the IR intensities 

of the intermolecular bending and stretching, respectively.16 Despite the very weak IR activity of the 

intermolecular bending , it is evident from Fig. 3(c) that the contribution of the bending mode is non-𝜒̃𝐵(𝜔)

negligible so as to reproduce the dielectric responses in between the fast relaxation (~300 GHz) and the 

intermolecular stretching (~5 THz) region. Taking note of the isotope effect, its oscillator strength 

 is found to be almost H/D independent within the margin of error. In contrast, the 
𝑓𝐵 ∝ ∫𝜔𝐼𝑚[𝜒̃𝐵(𝜔)]𝑑𝜔

intermolecular stretching mode  exhibits a significant isotopic effect on the oscillator strength: 𝜒̃𝑆(𝜔)

 with an accuracy of . Considering that the degenerated asymmetric 𝑓𝑆(𝐻2𝑂):𝑓𝑆(𝐷2𝑂) = 1 :0.84 ± 0.01

stretching of the instantaneous tetrahedral structure is associated with the dipole moment changes,17 

 is indicative of the greater degree of dynamical fluctuation involving distortion of the 𝑓𝑆(𝐻2𝑂) > 𝑓𝑆(𝐷2𝑂)

water structure of liquid H2O compared to that of D2O.18 In addition, the damping ratio of the 

intermolecular stretch of H2O ( 0.82) is found to be significantly smaller than that of D2O (𝜉𝑆 = 𝜔𝑆 𝛾𝑆 =  

0.90), pointing to a more quickly dismantled instantaneous tetrahedral HB structure of H2O. These 𝜉𝑆 =  

views are generally consistent with widely accepted knowledge that D2O is a more structured liquid than 

H2O, where the intermolecular O…O…O angle is more close to that of a regular tetrahedron and its 

S8

Table S1 Best-fitted libration parameters of eqn (5) under the constraint of 1.4 THz. Γ𝐿1 2𝜋 = Γ𝐿2 2𝜋 =  
Uncertainties are shown in parentheses.

𝜒̃𝐿1 𝜒̃𝐿2

 (THz)𝜔𝐿1 2𝜋  (THz)𝜔𝐿1
∆ 2𝜋  (THz)𝜔𝐿2 2𝜋  (THz)𝜔𝐿2

∆ 2𝜋

H2O 11.66 ± 0.05 4.22 ± 0.03 18.52 ± 0.07 4.84 ± 0.03

D2O 9.10 ± 0.04 4.27 ± 0.03 14.00 ± 0.05 3.60 ± 0.03



distribution is sharper for D2O.19-22
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