Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

SUPPLEMENTARY MATERIALS

Impact of chirality on peculiar ibuprofen molecular dynamics: hydrogen bonding organizations and syn vs anti carboxylic group conformation

Martin Thierry Ottou Abe, Maria Teresa Viciosa, Natália T. Correia, Frédéric Affouard

Isochronal plot of normalized imaginary part, $\epsilon''/\epsilon''_{max}$, at 10 kHz, taken from isothermal data obtained on cooling a sample of molten S-ibuprofen at 353 K (yellow symbols) and another sample at 373 K (red symbols; data shown in Fig. 2b). The Debye relaxation is enhanced when S-ibuprofen is heated at the higher temperature.

Dipolar dynamics – comparison with DRS experiments

Dielectric properties obtained from DRS experiments are related to the total dipole moment $\vec{M}(t)^1$ (see eq. 3). The complex frequency dependent permittivity $\varepsilon^* = \varepsilon' - i \cdot \varepsilon''$ measured experimentally by DRS can be classically well approximated by the Fourier transform of the autocorrelation function $\Phi_M(t) = \langle \vec{M}(t), \vec{M}(0) \rangle$ of the total dipole moment. The macroscopic quantity $\Phi_{M}(t)$ is usually challenging to compute from MD simulation because of poor statistics i.e. only one autocorrelation function is calculated for the whole system. The individual time-dependent correlation functions $\Phi_{\mu}(t) = \langle \vec{\mu}(t), \vec{\mu}(0) \rangle$ is often computed instead since it has advantage to be less noisy since an average is performed over the N molecules of the system. In the present study, we have calculated both $\Phi_M(t)$ and $\Phi_{\mu}(t)$ functions for the two enantiomeric mixtures at the five different temperatures. In the following, we will only show the less noisy function $\Phi_{\mu}(t)$ since it behaves very similarly to $\Phi_{\rm M}(t)$. It should be mentioned that in the present case, $\Phi_{\rm u}(t)$ is actually a very fair approximation of $\Phi_{M}(t)$ since weak correlations between dipoles are present with calculated values of the Kirkwood factor close to 1 $G_k \approx 1.^2$ In case of strong dipolar correlations as observed in monohydroxy alcohols, $\Phi_{\mu}(t)$ and $\Phi_{M}(t)$ would be significantly different as observed in monohydroxy alcohols.^{3, 4}

In Fig. 9a, the individual time-dependent correlation function $\Phi_{\mu}(t) = \langle \vec{\mu}(t), \vec{\mu}(0) \rangle$ is represented for RS- and S-ibuprofen at the temperature T = 380 K. Similar curves were also obtained for all other temperatures. The time decay of the $\Phi_{\mu}(t)$ functions can be well fitted

with a stretched exponential law classically used for glass-forming liquids⁵ exp $\left[-(t/\tau_{\mu})^{\beta_{\mu}}\right]$, where τ_{μ} is the characteristic time associated with the long time decay and $0 < \beta_{\mu} \leq 1$ the non-exponential parameter. A stretching parameter $0.48 \leq \beta_{\mu} \leq 0.50$ allowed us to fit data for RS- and S-ibuprofen and all investigated temperatures. These values are in fair agreement with the experimental data $\beta_{KWW} = 0.52$ reported for the α -relaxation from DRS.⁶ From Fig. 9a, the comparison of the $\Phi_{\mu}(t)$ functions of the RS- and S- ibuprofen reveals no significance difference within computational accuracy. Note that the same behavior was also observed at 500, 450, 400 and 360 K (data not shown). This result is well in line with the DRS experiments for which no difference is observed as well.

Previous MD computations^{1, 7} have shown the importance of the motion of the OH bond in the molecular frame of the --COOH carboxylic group (see Fig. 1 and inset in Fig. 8) and suggested that dynamics of this torsion could be at the origin of the Debye-like process seen from the DRS ⁶ (see Fig. 2 and 3). In addition to the computation of $\Phi_{\mu}(t)$, we have thus also performed calculation of the time-dependent function $\Phi_{OH}(t) = (\cos(\psi(t) - \psi(0)))$, where $\psi(t)$ is the torsion angle of the considered —COOH carboxylic functional group at time t. The symbol $\langle \rangle$ indicates an average on both time and molecules. The function $\Phi_{OH}(t)$ obtained for RS- and S-ibuprofen at the temperature T = 380 K is plotted in Fig. 9b. For both systems, $\Phi_{OH}(t)$ can be well adjusted by means of a simple exponential law $\exp[-t/t]$ τ_{OH}] well in line with the Debye-process observed in RS-ibuprofen^{6, 8} and S-ibuprofen (see Fig. 2 and 3). Similar curves were also obtained for all other temperatures and these adjustments make it possible to estimate the characteristic time τ_{OH} as function of temperature for RS- and S-ibuprofen. At first glance, this figure does not reveal any marked differences but comparison is made difficult due to the noisy behavior that longer simulations could possibly improve. However, while the $\Phi_{\mu}(t)$ functions shown in Fig. 9a remain very close for the two enantiomeric concentrations, the $\Phi_{OH}(t)$ functions from Fig. 9b seem to decay a bit longer for the RS-ibuprofen compared to the S-ibuprofen. Although no clear trend emerges from the scattering of the $\Phi_{OH}(t)$ functions, it may suggest more sensitivity of the Debyeprocess to the molecular chirality compared to the α -process. Interestingly, as previously shown, this small difference is well in line with the difference of polarity between RS- and Sibuprofen.

The characteristic times τ_{μ} and τ_{OH} obtained for all analyzed mixtures are shown in Fig. 4. which allows us to compare simulation and experimental data for both RS- and S-ibuprofen. We can clearly see that the characteristic times τ_{μ} and τ_{OH} determined for RS- and Sibuprofen from MD simulations are in very fair agreement with respectively the relaxation times of the α -process and the Debye-like process obtained from DRS experiments for RSand S-ibuprofen. Overall, Fig. 4 clearly shows that all times τ_{μ} and τ_{OH} assigned to the α process and Debye-like processes do not seem to be affected by the molecular chirality.

Fig. 9. (a) Time-dependent correlation functions $\Phi_{\mu}(t)$ (a) and $\Phi_{OH}(t)$ (b) at 380 K for the RS- and S-ibuprofen calculated from MD simulations. Similar curves are obtained for the other temperatures. Solid and dashed lines indicate fits for the RS- and S-ibuprofen respectively. $\Phi_{\mu}(t)$ and $\Phi_{OH}(t)$ data have been fitted using stretched exponential function $\exp\left[-(t/\tau_{\mu})^{\beta_{\mu}}\right]$ and single exponential law $\exp\left[-t/\tau_{OH}\right]$ respectively (see text).

References

- 1. F. Affouard and N. T. Correia, J. Phys. Chem. B, 2010, 114, 11397.
- 2. C. J. F. Böttcher, *Theory of dielectric polarization*, Elsevier: Amsterdam, 1973.
- 3. H. Weingärtner, H. Nadolny, A. Oleinikova and R. Ludwig, J. Chem. Phys., 2004, 120, 11692.
- 4. L. Saiz, E. Guardia and J. A. Padro, *J. Chem. Phys.*, 2000, 113, 2814.
- 5. K. L. Ngai, *Relaxation and Diffusion in Complex Systems.*, Springer, 2011.
- 6. A. R. Brás, J. P. Noronha, A. M. M. Antunes, M. M. Cardoso, A. Schönhals, F. Affouard, M. Dionisio and N. T. Correia, *J. Phys. Chem. B*, 2008, 112, 11087.
- 7. M. T. Ottou Abe, N. T. Correia, J. M. B. Ndjaka and F. Affouard, *J. Chem. Phys.*, 2015, 143, 164506.
- 8. K. Adrjanowicz, K. Kaminski, Z. Wojnarowska, M. Dulski, L. Hawelek, S. Pawlus, M. Paluch and W. Sawicki, *J. Phys. Chem. B*, 2010, 114, 6579.