TD DFT insights into unusual properties of excited sandwich complexes: Structural transformations and vibronic interactions in Rydberg-state bis(η⁶-benzene)chromium

Sergey Y. Ketkov, ^{*a} Elena A. Rychagova, ^a Sheng-Yuan Tzeng, ^b Wen-BihTzeng, ^{*b}

^a G.A. Razuvaev Institute of Organometallic Chemistry of the RussianAcadrmy of Sciences, Nizhny

Novgorod 603950, Russian Federation

^b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

e-mail: sketkov@iomc.ras.ru; wbt@sinica.edu.tw

Supplementary Information

Table S1. B3LYP / BPW91 frequencies of the a_{1g} and e_{2g} vibrations in the ground neutral (${}^{1}A_{1g}$), Rydberg (${}^{1}B_{2u}$) and cationic (${}^{2}A_{1g}$) states of the (η^{6} -C₆D₆)₂Cr molecule. The experimental Rydberg-state frequencies obtained from the REMPI spectrum¹are given in parentheses where available. See the main text for the vibration notations.

D _{6h} symmetry	<i>D</i> _{2h} symmetry	Vibration number	Neutral (¹ A _{1g})	R4p _y (¹ B _{2u})	Cation (² A _{1g})
a _{1g}	a _g	2s	2365 / 2305	2379 / 2347	2389 / 2343
<i>a</i> _{1g}	a _g	1s	940 / 921	945 / 920 (915)	941 / 919
<i>a</i> _{1g}	a _g	11as	609 / 595	615 / 589 (593)	613 / 594
<i>a</i> _{1g}	a _g	21	244 / 248	248 / 257 (248)	243 / 251
<i>e</i> _{2g}	a _g	7s	2338 / 2279	2340 / 2303	2366 / 2319
	b_{1g}			2195 / 2099	2365 / 2320
<i>e</i> _{2g}	a _g	8s	1489 / 1459	1485 / 1449	1491 / 1454
	b_{1g}			1492 / 1457	
<i>e</i> _{2g}	a _g	9s	853 / 826	854 / 836 (864)	862 / 839
	b_{1g}			108 / 23	
<i>e</i> _{2g}	a _g	17as	735 / 702	752 / 718(731)	751 / 715
	b_{1g}			749 / 714	
<i>e</i> _{2g}	a _g	6s	604 / 584	583 / 575	584 / 569
	b_{1g}			580 / 556	
<i>e</i> _{2g}	a _g	16as	408 / 394	410 / 396	402 / 392
	b_{1g}			411 / 385	

Figure S1. BPW91 isosurfaces (isovalue 0.02) of the Rydberg $4p_x$ (left) and $4p_y$ (right) orbitals of $(\eta^6 - C_6H_6)_2$ Cr.

Figure S2. B3LYP (a) and B3PW91 (b) simulation of the R4p_{x,y}vibronic structures in the REMPI (c) and EA (d) spectrum of **1-D** in the low-energy (top) and high-energy (bottom) regions. The experimental EA² and REMPI¹ peak positions and relative intensities are shown by bars. See the main text for the vibration notations.

REFERENCES

- 1 S. Y. Ketkov, H. L. Selzle and E. W. Schlag, J. Chem. Phys., 2004, **121**, 149–156.
- 2 S. Y. Ketkov, J. C. Green and C. P. Mehnert, J. Chem. Soc., Faraday Trans. 1997, 93, 2461–2466.