Supporting Information

Rationally Designing the Mixed Cu-(μ-O)-M (M=Cu, Ag, Zn, Au) Centers over Zeolite Materials with High Catalytic Activity towards Methane Activation

Guiru Wang,^{†,§,}¶ Ling Huang,^{†,}¶Wei Chen[†],[§] Jian Zhang, ^{††} Anmin Zheng^{*,†}

[†] State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China;
^{††} Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, P. R. China;
[§] University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

*Corresponding author: <u>zhenganm@wipm.ac.cn</u> [¶]G.R. Wang and Dr L. Huang contributed equally to this work. The Supporting Information provides:

The relative energies and configurations of [Cu(μ-O)M]²⁺-ZSM-5 (M=Cu, Ag, Zn, Au, Ni, Co, Fe)

- Table S1. The Relative energies of [Cu(μ-O)M]²⁺-ZSM-5 (M=Cu, Ag, Zn, Au, Ni, Co, Fe) calculated in the high-spin and low-spin states.
- Figure S1. The configurations of [Cu(μ-O)M]²⁺-ZSM-5 (M=Cu, Ag, Zn, Au, Ni, Co, Fe) in low and high-spin states.

2. Methane conversion to methanol on $[Cu(\mu-O)Cu]^{2+}$ -ZSM-5 (singlet)

- Figure S2. Reaction energy diagram and optimized structures of intermediates and transition states for the methane conversion to methanol on [Cu(μ-O)Cu]²⁺-ZSM-5 (singlet)
- 3. The key geometric parameter of reactants, intermediates, transition states for methane conversion on $[Cu(\mu-O)M]^{2+}$ -ZSM-5 (M=Cu, Ag, Zn, Au)
- **Table S2.** The key geometrical parameters of intermediates and transition states for the reaction over $[Cu(\mu-O)M]$ -ZSM-5 (M=Cu, Ag, Zn, Au).

4. The Relative energies of CH₃[•]-OCuM and M-OH-Cu-CH₃ (M=Cu, Ag, Au) calculated in the high-spin and low-spin states.

Table S3. The Relative energies of CH₃·-OCuM and M-OH-Cu-CH₃ (M=Cu, Ag, Au) calculated in the high-spin and low-spin states.

5. C-H activation of methane on CuOM(M=Cu, Ag, Zn, Au)-ZSM-5 cluster

- Table S4. The activation barrier for C-H activation of methane over 10T-[Cu(μ-O)M]²⁺-ZSM-5 cluster and periodic [Cu(μ-O)M]²⁺-ZSM-5 system (M=Cu, Ag, Zn, Au).
- Figure S3. The configurations of reactants, transition states, and products on 10T-[Cu(μ-O)M]²⁺-ZSM-5 (M=Cu, Ag, Zn, Au) cluster.

Details of relative energies and configurations of [Cu(μ-O)M]²⁺-ZSM-5 (M=Cu, Ag, Zn, Au, Ni, Co, Fe)

Table S1. The Relative energies of $[Cu(\mu-O)M]^{2+}$ -ZSM-5 (M=Cu, Ag, Zn, Au, Ni, Co, Fe)calculated in the high-spin and low-spin states.

CuOM	Spin multiplicity	Relative energies (eV)
0.00	singlet	0.1
Cuocu	triplet	0
0-07-	doublet	0
CuOzh	quartet	2.90
	singlet	0.14
CuOAg	triplet	0
Cro Are	singlet	0.16
CuOAu	triplet	0
C-ON:	doublet	0.12
CuONI	quartet	0
0.00	triplet	0.26
Cuoco	quintuplet	0
CrOFe	quartet	0.04
CuOFe	sextet	0

Figure S1. The configurations of $[Cu(\mu-O)M]^{2+}$ -ZSM-5 (M=Cu, Ag, Zn, Au, Ni, Co, Fe) in low and high-spin states.

2. Methane conversion to methanol on [Cu(μ-O)Cu]²⁺-ZSM-5 (singlet)

Figure S2. Reaction energy diagram and optimized structures of intermediates and transition states for the methane conversion to methanol on $[Cu(\mu-O)Cu]^{2+}$ -ZSM-5 (singlet).

3. The key geometric parameter of reactants, intermediates, transition states for methane conversion on $[Cu(\mu-O)M]^{2+}$ -ZSM-5 (M=Cu, Ag, Zn, Au)

Table S2. The key geometrical parameters of intermediates and transition states for the reaction over $[Cu(\mu-O)M]$ -ZSM-5 (M=Cu, Ag, Zn, Au).

		Spin	∠Cu–O-Cu	d _{Cu1–Cu2}	$d_{\rm Cu1-C}$	$d_{\rm Cu1-O}$	$d_{\rm Cu2-O}$	$d_{ m C-H}$	d _{O-H}	d _{C-Ooxo}
		Multiplicity	(deg)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)
	RC	triplet	117.0	2.981	3.215	1.754	1.741	1.096	2.424	3.259
	TS1	triplet	88.8	2.551	3.155	1.827	1.819	1.399	1.187	1.399
SM-5	RI	triplet	100.5	2.820	3.331	1.842	1.826	2.185	0.981	2.937
SZ-nC	AI	singlet	95.7	2.741	1.976	1.832	1.864	2.761	0.978	2.761
CuOo	MC	singlet	95.3	2.724	1.978	1.978	1.857	2.750	0.979	2.750
	MC'	triplet	118.8	3.237	1.998	1.939	1.821	2.908	0.976	2.969
	TS2	singlet	78.2	2.448	2.301	1.988	1.891	2.180	0.981	1.895
	PC	singlet	68.1	2.849	2.221	2.936	1.930	2.009	0.978	1.895
	FC	-	-	2.482	-	-	-	-	-	1.429
		Spin	∠Cu–O-Ag	$d_{\rm Cu-Ag}$	$d_{\rm Cu-C}$	$d_{ m Cu-O}$	$d_{ m Ag-O}$	$d_{ m C-H}$	$d_{\mathrm{O-H}}$	$d_{ m C-O}$
		Multiplicity	(deg)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)
	RC	triplet	118.4	3.246	3.255	1.740	2.035	1.098	2.312	3.192
	TS1	triplet	103.5	2.424	3.353	1.782	2.132	1.316	1.227	2.525
SM-5	RI	triplet	109.1	3.244	3.458	1.810	2.164	1.965	0.995	2.864
Ag-Z.	AI	singlet	87.8	2.783	1.965	1.810	2.184	2.747	0.978	2.698
CuO	MC	singlet	87.4	2.776	1.964	1.809	2.189	2.792	0.978	2.718
	MC'	triplet	106.9	3.204	2.055	1.883	2.102	3.114	0.975	3.080
	TS2#	singlet	74.4	2.628	2.137	1.833	2.474	2.280	0.981	1.980
	PC	singlet	-	2.585	3.176	1.994	3.261	2.027	0.983	1.455
	FC	-	-	2.307	-	-	-	-	-	-
)Zn- M-5		Spin	∠Cu–O-Zn	$d_{\mathrm{Cu-Zn}}$	$d_{\mathrm{Cu-C}}$	$d_{ m Cu-O}$	d _{Zn-O}	$d_{ m C-H}$	$d_{\mathrm{O-H}}$	d _{C-O}
CuC ZSI		Multiplicity	(deg)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)

	RC	doublet	100.6	2.765	3.255	1.781	1.812	1.096	2.353	3.226
	TS1*	doublet	84.7	2.500	3.153	1.841	1.869	1.331	1.235	2.539
	RI	doublet	83.8	2.519	3.265	1.903	1.870	2.136	0.988	2.946
	TS2*	doublet	71.8	2.424	3.101	1.890	2.220	2.301	0.985	2.056
	MC	doublet	114.6	3.261	1.953	2.036	1.836	2.941	0.975	3.068
	TS3*	doublet	71.8	2.424	3.101	1.890	2.220	2.301	0.985	2.056
	PC	doublet	-	2.356	3.011	1.984	3.335	2.008	0.976	1.457
	FC	-	-	2.688	-	-	-	-	-	-
		Spin	∠Cu–O-Au	$d_{\mathrm{Cu-Au}}$	$d_{ m Cu-C}$	$d_{ m Cu-O}$	$d_{ m Au-O}$	$d_{\mathrm{C-H}}$	$d_{ m O-H}$	$d_{ m C-O}$
		Multiplicity	(deg)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)
	RC	triplet	86.6	2.578	3.144	1.810	1.946	1.098	2.603	3.191
	TS1*	triplet	80.7	2.516	3.276	1.863	2.020	1.346	1.220	2.550
SM-5	RI	triplet	80.6	2.540	3.532	1.886	2.040	2.136	1.001	2.930
Z-nA	AI	singlet	86.1	2.678	1.969	1.843	2.071	2.680	0.979	2.773
CuO	TS2*	singlet	72.4	2.497	2.190	1.857	2.324	2.301	0.982	1.897
	MC	singlet	82.3	2.577	1.967	1.840	2.066	2.941	0.980	2.806
	MC'	triplet	99.2	3.018	2.024	1.944	2.016	3.278	0.977	3.120
	PC	singlet	-	2.865	2.257	2.950	2.121	2.008	0.974	1.453
	FC	-	-	2.582	-	-	-	-	-	-

RC: Reactant complex, TS: transition state, RI: Radical intermediate (triplet), AI: Adsorbed intermediate, MC: Methyl complex (singlet), MC': Methyl complex (triplet), PC: Product complex (adsorbed), FC: Final complex (desorbed).

4. The Relative energies of CH₃⁻-OCuM and M-OH-Cu-CH₃ (M=Cu, Ag, Au)

calculated in the high-spin and low-spin states.

Table S3. The Relative energies of CH₃⁻-OCuM and M-OH-Cu-CH₃ (M=Cu, Ag, Au) calculated in the high-spin and low-spin states.

species	Singlet (eV)	Triplet (eV)
CH ₃ ·-OCu ₂	0 (adsorbed)	0.94 (radical)
CH3 [•] -OCuAg	0 (adsorbed)	1.38 (radical)
CH3 [•] -OCuAu	0 (adsorbed)	1.00 (radical)

Cu-OH-Cu-CH ₃	0	0.52
Ag-OH-Cu-CH ₃	0	0.87
Au-OH-Cu-CH ₃	0	0.93

5. C-H activation of methane on CuOM(M=Cu, Ag, Zn, Au)-ZSM-5 cluster

The activation barrier for methane activation on 10T-CuOM-ZSM-5 cluster and $[Cu(\mu-O)M]^{2+}$ -ZSM-5 (M=Cu, Ag, Zn, Au) periodic system are displayed in **Table S4**. The reactants, transition states, products involved in methane activation on cluster model are shown in **Figure S3**.

The activation barriers for methane activation on 10T-[Cu(μ -O)M]²⁺-ZSM-5 (M=Cu, Ag, Zn, Au) cluster are 0.80, 0.32, 0.84, and 0.45 eV, respectively, which are in according with those (0.73, 0.33, 0.90 and 0.49 eV) on periodic CuOM-ZSM-5 (M=Cu, Ag, Zn, Au) periodic system. The calculated results indicated that GGA-PBE method in our wok is reliable.

Method	Model	Ea (eV)
B3LYP-D3	10T-[Cu(µ-O)Cu] ²⁺ -ZSM-5	0.80
	10T-[Cu(µ-O)Ag] ²⁺ -ZSM-5	0.32
	10T-[Cu(µ-O)OZn] ²⁺ -ZSM-5	0.84
	10T-[Cu(µ-O)Au] ²⁺ -ZSM-5	0.45
PBE-D3	periodic-[Cu(µ-O)Cu] ²⁺ -ZSM-5	0.73
	periodic-[Cu(µ-O)Ag] ²⁺ -ZSM-5	0.33
	periodic-[Cu(µ-O)OZn] ²⁺ -ZSM-5	0.90
	periodic-[Cu(µ-O)Au] ²⁺ -ZSM-5	0.49

Table S4. The activation barrier for C-H activation of methane over $10T-[Cu(\mu-O)M]^{2+}$ -ZSM-5 cluster and periodic $[Cu(\mu-O)M]^{2+}$ -ZSM-5 system (M=Cu, Ag, Zn, Au).

Figure S3. The configurations of reactants, transition states, and products on 10T-[Cu(μ -O)M]²⁺-ZSM-5 (M=Cu, Ag, Zn, Au) cluster.

References

- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 2. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 3. K. Kim and K. Jordan, J. Chem. Phys., 1994, 98, 10089-10094.
- P. Stephens, F. Devlin, C. Chabalowski and M. J. Frisch, *J. Chem. Phys.*, 1994, 98, 11623-11627.
- 5. P. Hariharan, *Theor. Chim. Acta.*, 1973, 28, 213.

- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654-3665.
- 7. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- M. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson, *Inc., Wallingford, CT*, 2009, 200.