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1 Angular momentum autocorrelation functions

The Fokker-Planck equation of a rigid rotator is given in Eq. 6 of the main
text and is here reported for the sake of completeness

∂
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eq

)
P (t)

= −Γ̂P (t) (1)

with P (t) = P (Ω,L, t).
We also recall the two main approximations that have been done in the
interpretation / analysis protocol: i) the precession terms are small, and
ii) the I, ξ, and D tensors are constant, diagonal and collinear in the same
frame, which is the one that we call the molecular frame (MF). MF is the
non-inertial instant frame having its origin in the center of mass of the
molecule and with its axes aligned with the principal axes of inertia. Under
these approximations, the Fokker-Planck operator reads
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We notice, here, that functions LβPeq are eigenfunctions of the approximated
Fokker-Planck operator
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Such an observation can be used in the calculation of the autocorrelation
functions of the components of the angular momentum

Gα(t) =
Lα(0)Lα(t)

Lα(0)Lα(0)
=
〈Lα|e−Γ̂t|LαPeq〉
〈L2

αPeq〉
= e−ξα,αt/Iα,α (4)

that show to be single exponential decays.
We stress here that this result is valid for a free rigid rotator, for which the
precession term can be neglected, and the I and ξ are considered diagonal
in MF.
In the main text, to simplify the notation, we write ξα = ξα,α, and Iα = Iα,α.
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2 Correlation functions of GB3, BPTI, PB1, and
LYS

Figure 1 reports the full set of the autocorrelation functions of the com-
ponents of the angular momentum for four proteins, in particular: GB3,
BPTI, PB1, and LYS, which were the fucntions that could be fitted with a
bi-exponential decay. Data obtained from the MD trajctories is represented
as dotted line, while the continuous line is the result of the fitting.

Figure 1: Normalized angular moment components autocorrelation func-
tions for (A) BPTI, (B) LYS, (C) GB3 and (D) PB1.
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3 Root mean square displacement and stability of
the results

A parameter that is usually employed to monitor the equilibration of a
molecular dynamics (MD) trajectory, at least for globular proteins, is the
root mean suqare displacement (RMSD). The simulation is considered equi-
librated as soon as the RMSD is fluctuating about an average value. Since
this is a standard approach adopted by the computational chemistry com-
munity in MD simulations of proteins, all of the calculations presented in the
main text have been performed on a production trajectory obtained afted
the stabilization of the RMSD. The time required for the equilibration was 6
ns for all of the proteins. Figure 2 reports the RMSD as function of time in
the 3 ns production MD trajectories following the equilibration, for all of the
four proteins. As it can be seen, the RMSD is averagely constant for BPTI,
GB3 and plexin B1. The RMSD of lysozime shows an initial drop from an
average 4.5 Å to an average 3.5 Å RMSD after 1 ns, but then remains stable
for the subsequent 2 ns. It is interesting to note, however, that the cal-
culation of the rotational friction tensor from the autocorrelation functions
of the Cartesian components of the angular momentum is substantially not

Figure 2: RMSD, calculated with respect to the first snapshot, along the
3 ns-long production trajectories of BPTI (black line), lysozyme (red line),
GB3 (green line), and plexin B1 (blue line).
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α a2
α τα / fs τ̄α / ps Iα / 10−41 kg m2 Dα,α / 107 Hz Exp.

BPTI

X 0.91 170.2 0.656 0.57 12.0 (9.6) /
Y 0.82 132.1 0.671 1.17 4.7 (4.0) /
Z 0.36 94.3 0.292 1.32 3.0 (2.6) /

iso 6.6 (5.4) 4.3

LYS

X 0.81 185.9 1.31 2.69 2.9 (3.2) /
Y 0.62 140.4 0.614 3.70 1.6 (1.7) /
Z 0.74 181.7 0.872 4.28 1.8 (1.9) /

iso 2.1 (2.3) 2.3

GB3

X 0.88 160.5 0.730 0.68 9.7 (9.1) /
Y 0.84 141.4 0.661 0.82 7.1 (7.7) /
Z 0.90 159.5 0.836 1.06 6.3 (6.9) /

iso 7.7 (7.9) 5.5

Table 1: Results of the analysis of the rotational diffusion tensor after only
3 ns of equilibration. In parenthesis are reported the results shown in the
main text, obtained after 6 ns equilibration (with stable RMSD).

affected by the fact that the RMSD is stable. Table 1 reports the results
of the same fitting analysis reported in the main text done over the second
half of the 6 ns equilibration trjectory, when the RMSD is still not stable.
As it can be seen, the error with respect to the results obtained after RMSD
stabilization, is around 10%. From such a result, it can be concluded that
the method allows a fast evaluation of the rotational diffusion tensor of large
proteins even without the necessity of the commonly adopted equilibration
procedure.
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4 Anisotropy of the friction tensor

In the main text, the isotropic part of the diffusion tensor obtained with
the method proposed in this work is compared with the calcuation carried
out with a hydrodynamic based approach. The latter, however, gives ac-
cess to the single components of the tensor also. Therefore, it is possible
to compare the anisotropy of the diffusion tensor computed with the two
methods. Results are reported in Table 2. There are two issues that are
worth to discuss. The hydrodynamics approach can provide an overall bet-
ter agreemend with the experimental data, but this is possible thanks to
two adjustable parameters, which are the hydrodynamic boundary condi-
tions and the effective radius of the beads. However, the diffusion tensor
evaluated using the short MD trajecotries, while in less accord with exper-
iments, is free from adjustable parameters. Clearly, a good force field is
required to describe the energetics of the protein in water.
A second comment is on the anisotropy. No data was found in the literature
about the single principal components of the diffusion tensor. By compar-
ison of the MD- and hydodynamics-based approaches, it emerges that the
latter over estimates the anisotropy with respect to the former. This can
be due by two approximations made in the hydrodynamics approach: i) the
same effective radius is associated to all of the beads, and ii) the hydro-
dynamic interactions among the beads are accounted only for pair hydro-
dynamic interactions. Using different radii for different beads may change
the anisotropy, but due to the difficulty of matching an atomistic view of
the molecule with the hydrodynamic approach, it is not clear how to assign
a certain radius to a certain atom. The second problem, i.e. calculating
the flow disturbance on a bead because of the motion of all the surrounding
beads, is a very difficult task. The method based on the angular momen-

MD - angular momentum DiTe

Dα,α / 107 Hz BPTI LYS GB3 PB1 BPTI LYS GB3 PB1

X 9.6 3.2 9.1 3.0 5.6 3.1 6.6 2.2

Y 4.0 1.7 7.7 2.3 4.2 2.2 4.8 2.0

Z 2.6 1.9 6.9 2.1 4.2 2.2 4.6 1.7

iso 5.4 2.3 7.9 2.5 4.7 2.5 5.3 1.9

Table 2: Comparison of the principal components of the rotational diffusion
tensor of the four proteins analysed in this work between the method based
on the angular momentum correlation functions and the hydrodynamics
based approach. Two hydrodynamic using an effective radius for the beads
(heavy atoms) of 3.4 Å (which is the one that provided the best agreement
with experimental results), stick boundary conditions, viscosity of 8.94 mPa
s, and temperature 300 K.
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tum autocorrelation functions is not affected by these problems. A deeper
investigation on the different anisotropy provieded by the two methods is
due, especially having access to experimentally measured components of the
rotational diffusion tensor.
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5 Fitting with only a single exponential decay

In the main text, a bi-exponential decay functional form has been employed
to fit the angular momentum autocorrelation functions. In some cases, it was
possible to extract both the correlation times, interpreting the shortest one
as that related to the relaxation of the global angular momentum. In some
other cases (alanine peptides and thrombin), it was only possible to obtain
one single correlation time, from the fitting. Even with this badly fitting
curve, the correlation time proofed to mainly contain the information on
the relaxation of the momentum, providing a good estimate of the diffusion
tensor of the molecules.
We performed a test on plexin B1, repearing the fitting using only a single
exponential decay. The results are reported in Table 3 and show that while
the agreement with experimental data worsens, the quality of the estimation
is compatible with the other calculations. We just suggest that a single
exponential decay fit of angular momentum autocorrelation functions is a
very fast route to obtain an accptable estimation of the diffusion tensor.

α τα / fs DMONO−EXP
α,α / 107 Hz DBI−EXP

α,α / 107 Exp.

X 291 4.6 3.0

Y 266 3.4 2.3

Z 300 3.2 2.1

iso 3.7 2.5 1.9

Table 3: Results of the analysis of the rotational diffusion tensor fitting the
plexin B1 angular momentum correlation function with a mono exponential
decay (MONO-EXP) compared with the bi-exponential fitting (BI-EXP)
and experimental data.
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