Supporting Information for

Atmospheric chemistry of (Z)-CF₃CH=CHCl: Products and mechanisms of the Cl atom, OH radical and O₃ reactions, and role of (E)-(Z) isomerization

Mads P. Sulbaek Andersen^{a,b,*}, Theis I. Sølling^b, Lene Løffler Andersen^b, Aleksandra Volkova^a, Dvien Hovanessian^a, Connor Britzman^a, Ole John Nielsen^b, Timothy J. Wallington^c

- ^a Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff St., Northridge, CA 91330-8262, USA
- ^b Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

^c Research and Advanced Engineering, Ford Motor Company, Mail Drop RIC-2122, Dearborn, MI 48121-2053, USA

*Corresponding author: Mads P. Sulbaek Andersen, mpsa@csun.edu

Table of Contents:

Section 1: Products of the Cl atom initiated oxidation of <i>(Z)</i> -CF ₃ CH=CHCl	Page 2
Figure S1	Page 2
Figure S2	Page 3
Section 2: Products of the O_3 initiated oxidation of (<i>E</i>)-CF ₃ CH=CHCl	Page 4
Figure S3	Page 5
References	Page 6

Section 1: Products of the Cl atom initiated oxidation of (Z)-CF₃CH=CHCl

Figure S1: Panel A: Observed molar yield of HCOCI (triangles), CF₃COCI (squares), CF₃CHO (inverted triangles), (E)-CF₃CH=CHCl (stars), CF₃CHClCHO (diamonds), CF₃CHClCOCl (hexagons), and CF₃C(O)CHCl₂ (circles) versus the O₂ partial pressure following UV irradiation of (Z)-CF₃CH=CHCl/Cl₂/N₂/O₂ mixtures at 700 Torr total pressure, in the absence (solid symbols) and presence (open symbols) of NO_x. The grey bar serves to highlight the product yields obtained in one atmosphere of air (140 Torr O₂ partial pressure). The line through the (E)-CF₃CH=CHCl data is a linear fit. The curves through the HCOCl, CF₃CHO, and CF₃CHClCHO data are polynomial fits to aid visual inspection of the data trends. The line through the CF₃COCl, CF₃C(O)CHCl₂, CF₃CHClCOCl data are fits using expressions analogous to those utilized for E-CF₃CH=CHCl and described in detail in Sulbaek Andersen et al.¹ Panel A-D correspond to the grouping of reaction pathways indicated in the proposed isomer-generic mechanism in Figure 5 of Sulbaek Andersen et al.¹ Panel B: Yield of CF₃C(O)CHCl₂ and the corresponding yields of CF_3CHO and HCOCl as a function of $[O_2]$. The sum of the yields is shown as open circles. Panel C: Yield of CF₃COCl together with the residual amount of CF₃CHO and HCOCl as a function of [O₂]. Panel D: Yields of CF₃CHClCOCl, CF₃CHClCHO, the sum of the decomposition channels (light blue circles), and the sum decomposition channels + CF₃CHClCOCl (open circles) as a function of $[O_2]$.

Figure S2: Proposed oxidation mechanism based Sulbaek Andersen et al. ¹, and adapted here for the Cl atom initiated oxidation of *Z*-CF₃CH=CHCl. Dashed boxes include reactions for which oxygen dependencies are illustrated in Figures S1 B through D.

Section 2: Products of the O₃ initiated oxidation of *(E)*-CF₃CH=CHCl

The products of reaction (1) were studied by exposing (E)-CF₃CH=CHCl to O₃ in excess in the reaction chamber at Ford.

$O_3 + (E)$ -CF₃CH=CHCl \rightarrow products (1)

An OH radical scavenger (cyclohexane) was added to the reaction mixtures to avoid potential problems associated with the loss of *(E)*-CF₃CH=CHCl via reaction with OH radicals formed in reaction (1). Initial concentrations of reactants at Copenhagen were 6.9-14.2 mTorr *(E)*-CF₃CH=CHCl, 15.6-20.3 mTorr cyclohexane, and 3.42-4.36 Torr O₃ in 700 Torr of air diluent. Initial concentrations of reactants at Ford were 5.9-6.3 mTorr *(E)*-CF₃CH=CHCl, 14.0-30.6 mTorr cyclohexane, and 414-2070 mTorr O₃ in 700 Torr of air diluent. Variation of the [cyclohexane] / [*(E)*-CF₃CH=CHCl] ratio over the range 2.2-5.2 had no discernable effect on the observed decay of *(E)*-CF₃CH=CHCl suggesting that loss via reaction with OH radicals is not a significant complication. Figure S3 shows the formation of products HCOCl, CF₃CHO and CF₃OH/COF₂. The lines in Figure S3 are linear least squares fit to the data giving yields of (63 ± 9)%, (33 ± 3)%, and (34 ± 4)%, for HCOCl, CF₃CHO and CF₃OH/COF₂ (sum), respectively. See the main text for discussion and comparison with the analogous *(Z)*-CF₃CH=CHCl experiment.

Figure S3: Yields of HCOCl (panel A), COF_2 , CF_3OH (panel B), and CF_3CHO (panel C) following the O₃ initiated oxidation of *E*-CF₃CHCHCl. Panel B shows a both COF_2 (upwards triangles) and CF_3OH (downwards triangles) as well as the sum of the two compounds (cross marks).

References

M.P.S. Andersen, O.J. Nielsen, M.D. Hurley and T.J. Wallington, *Phys. Chem. Chem. Phys.*, 2012, 14, 1735-1748.