Supplementary Information (SI)

Evolution of optical properties and electronic structures: band gaps

and critical points in $Mg_xZn_{1-x}O$ ($0 \le x \le 0.2$) thin films

Yue-Jie Shi,^a Rong-Jun Zhang,^{*a} Xin Chen,^{*b} Lei Wang,^c Lei Chen,^c Qing-Hua Huang,^c Da-Hai Li,^a Yu-Xiang Zheng,^a Song-You Wang,^a Ning Dai^b and Liang-Yao Chen^a

^a Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China. Email: rjzhang@fudan.edu.cn

^b National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.

Email: xinchen@mail.sitp.ac.cn

^cInstitute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621999, China.

List of Figures

List of Tables

1. XPS measurements

Here the needed information for XPS results is provided. Peak-differentationimitating analysis for Zn 2p and Mg 2p is provided in Figure 1b-c, and their detailed parameters (including peak location, full-width-at-half-maximum (FWHM), energy separation and atomic ratio) are listed in Table S 1. The fitting formula is the combination of Lorentz function and Gaussian function. The global fitting accuracy is quantified by the standard deviation (*STD*), which is described as:

$$STD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_{Mi} - X_{Ci})^2}$$

where *N* is the number of measured data, X_{Mi} is the measured data, and X_{Ci} is the calculated data. Since the as-obtained *STD* is global wide, the much smaller *STD* compared with the intensity of data is able to indicate that the calculated atomic ratio is reasonable and accurate (Red Circle in Figure S 1).

Table S 1. Peak positions and FWHM of the XPS Zn 2*p* and Mg 2*p* peaks obtained from sample 4:1(x=0.2), 7:1(x=0.12) and 10:1(x=0.09), and the calculated [Zn]/[Mg] atomic ratio derived from XPS (Corresponding to the fitting results of Fig. 1 in the manuscript, no error bars).

Sar	nple	4:1	7:1	10:1	
7n 2n	Position/eV	1021.32	1021.24	1021.19	
$2 \ln 2 p_{3/2}$	FWHM/eV	1.60	1.64	1.74	
7. 2.	Position/eV	1044.40	1044.32	1044.25	
$\sum 11 2p_{1/2}$	FWHM/eV	1.75	1.77	1.87	
 Ma 2n	Position/eV	49.58	49.54	49.54	
$\log 2p_{3/2}$	FWHM/eV	1.12	1.28	1.57	
M. 2.	Position/eV	50.54	50.64	50.75	
$\log 2p_{1/2}$	FWHM/eV	1.35	1.28	1.28	
Atomic ratio	Experimental	3.80:1	6.92:1	10.01:1	
[Zn]/[Mg]	Theoretical	4:1	7:1	10:1	

Figure S 1. The as-obtained standard deviation (*STD*) from XPS measurements of sample 4:1(x=0.2), 7:1(x=0.12) and 10:1(x=0.09).

2. Critical Point (CP) parameters

All of the fitting parameters of ZMO samples are summarized in Table S 2, in which the acquired eight CP energies (E_{th}) are in bold.

Table S 2. Main parameters of the SCP model for ZMO films extracted from the best

 fitting second derivatives of the dielectric functions.

	Sample	4:1	5:1	6:1	7:1	8:1	10:1	12:1	14:1	ZnO
A	$A_{\rm m}$ /no unit	0.265	0.352	0.323	0.214	0.198	0.213	0.241	0.222	0.178
	φ /rad	1.075	1.017	0.779	0.882	0.926	0.913	1.130	1.251	1.190
	$E_{\rm th}/{\rm eV}$	3.650	3.581	3.523	3.497	3.482	3.430	3.424	3.414	3.322
	γ/eV	0.233	0.239	0.230	0.183	0.174	0.175	0.178	0.169	0.149
В	$A_{\rm m}$ /no unit	0.148	0.188	0.097	0.119	0.110	0.081	0.055	0.063	0.071
	φ /rad	2.683	3.112	2.756	3.335	2.706	3.046	2.955	2.661	2.453
	$E_{\rm th}/{\rm eV}$	3.973	3.946	3.859	3.885	3.814	3.724	3.692	3.654	3.544
	γ/eV	0.265	0.220	0.126	0.163	0.159	0.107	0.137	0.171	0.178

C	$A_{\rm m}$ /no unit	0.001	0.016	0.040	0.029	0.068	0.015	0.003	0.002	0.011
	φ /rad	2.527	1.778	1.372	0.740	0.952	1.198	1.846	2.035	3.198
	$E_{\rm th}/{\rm eV}$	3.330	3.304	3.282	3.273	3.280	3.275	3.297	3.285	3.364
	γ/eV	0.080	0.171	0.216	0.194	0.246	0.138	0.102	0.098	0.146
D	$A_{\rm m}$ /no unit	0.007	0.001	/	/	/	0.012	0.003	0.007	0.002
	φ /rad	1.704	2.216	/	/	/	1.760	3.442	3.432	2.079
	$E_{\rm th}/{\rm eV}$	3.480	3.481	/	/	/	3.497	3.490	3.475	3.477
	γ/eV	0.134	0.089	/	/	/	0.140	0.094	0.129	0.090
Е	$A_{\rm m}$ /no unit	0.099	0.045	0.084	0.052	0.028	0.067	0.006	0.020	0.002
	φ /rad	1.656	1.635	2.253	2.257	1.490	1.255	0.550	1.471	1.575
	$E_{\rm th}/{\rm eV}$	4.104	4.112	4.054	4.078	4.061	4.053	4.061	4.059	4.106
	γ/eV	0.387	0.227	0.313	0.241	0.225	0.257	0.146	0.275	-0.125
F	$A_{\rm m}$ /no unit	0.008	0.005	0.006	0.007	0.010	0.008	0.009	0.001	0.004
	φ /rad	0.665	1.097	1.026	0.837	0.711	0.404	0.441	0.538	0.508
	$E_{\rm th}/{\rm eV}$	4.345	4.342	4.351	4.336	4.349	4.345	4.345	4.345	4.348
	γ / eV	0.168	0.143	0.164	0.185	0.200	0.186	0.213	0.107	0.147
	$A_{\rm m}$ /no unit	0.008	0.009	0.039	0.002	0.025	0.006	0.002	0.002	0.018
G	φ /rad	3.575	4.526	3.576	0.917	3.239	2.213	1.880	2.109	2.904
	$E_{\rm th}/{\rm eV}$	3.718	3.719	3.687	3.658	3.708	3.732	3.718	3.727	3.686
	γ/eV	0.167	0.122	0.230	0.081	0.145	-0.070	-0.062	-0.070	0.122
Н	$A_{\rm m}$ /no unit	0.050	0.019	0.011	0.018	0.006	0.106	0.008	0.010	0.008
	φ /rad	6.226	6.045	6.230	5.316	5.308	2.444	3.633	2.662	1.920
	$E_{\rm th}/{\rm eV}$	3.844	3.818	3.825	3.859	3.796	3.862	3.831	3.829	3.766
	γ/eV	-0.353	-0.185	-0.121	-0.133	-0.118	0.252	0.108	0.144	0.113

3. SEM images

Here some cross-sectional SEM images are provided. After the sample preparation in the process of SEM test, in order to improve the conductivity and to acquire more clear SEM images, we deposited \sim 2.5 nm gold film on the section by sputtering (19 s).

Figure S 2. The cross-sectional SEM images of sample 6:1(*x*=0.14), 7:1(*x*=0.12), 8:1(*x*=0.11), 10:1(*x*=0.09), 12:1(*x*=0.08) and ZnO(*x*=0).