Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Blue phosphorene-Based Heterostructures: Type-II Semiconductors with Direct Band Gap and Enhanced Visible Light Absorption for Optoelectronic Applications

Leqian Du^{a,#}, Kai Zheng^{a,#}, Heping Cui^a, Yunhao Wang^b, Luqi Tao^{a*}, Xianping Chen^{a*}

- a) Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China.
- b) School of Economics, Northeast Normal University, Changchun 130117, China.

[#] These authors contributed equally to this work.

^{*}Correspondence authors: Luqi Tao (taoluqi@126.com); Xianping Chen (xianpingchen@cqu.edu.cn)

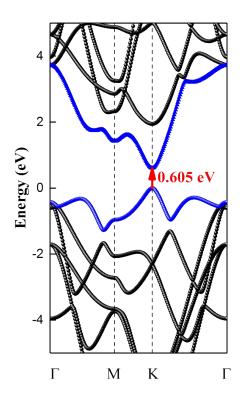


Fig. S1 The band structure of the ABIII pattern.

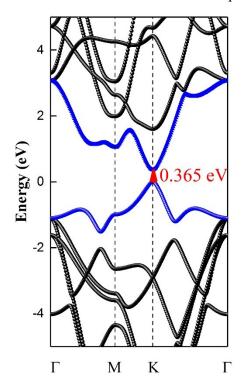


Fig. S2 The band structure of the ABIII pattern under an *E-field* of 0.001 a.u.

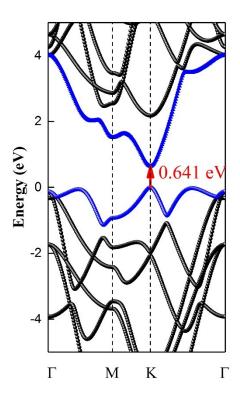


Fig. S3 The band structure of the ABIII pattern under an *E-field* of 0.002 a.u.

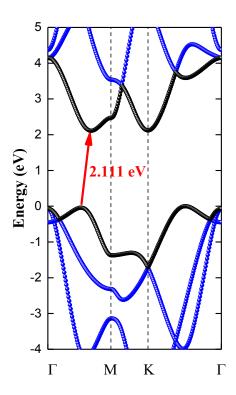


Fig. S4 The band structure of the isolated Blue-p with the same lattice constant