SUPPORTING INFORMATION

Understanding Gold Nanoparticle Dissolution in Cyanide-Containing Solution via Impact-chemistry

Alex L. Suherman, Giorgia Zampardi, Sabine Kuss, Eden E. L. Tanner, Hatem M. A. Amin, Neil P. Young, Richard G. Compton

SI.1 Calculation Detail

- Concentration of AuNPs suspension (indicated by manufacturer) = 2.61 x 10¹⁰ NPs ml⁻¹
- Average radius of AuNPs (indicated from TEM sizing), r_{p} = 31.45 \pm 1.33 nm
- Surface area of single AuNP = $1.24 \times 10^{-14} \text{ m}^2$ • Radius of GCE, r_e = $1.49 \pm 0.01 \text{ mm}$
- Surface area of GCE 6.97 x 10⁻⁶ m²
- Volume of single particle (V_p) = 1.30 x 10⁻²² m³

Estimate number of AuNP in one-monolayer (considering closest packing of equal spheres 91%), n_p, is

$$\frac{6.97 \times 10^{-6} m^2}{1.24 \times 10^{-14} m^2}$$

 \mathbf{n}_{p}

= ca. 5 x 10⁸ NPs

 $\frac{n_p}{[AuNP]}$

Drop cast volume required for one-monolayer:

Volume

$$= \frac{5.12 \ x \ 10^8 \ NPs}{2.61 \ x \ 10^{10} \ NPs \ ml^{-1}} = 0.02 \ ml \ (ca. 20 \ \muL)$$

Expected Charge for a single AuNP

a) CV Experiments (z = 1, assuming 1e⁻ transfer)

 $Q = \frac{Density of Au \times Volume of AuNP}{Atomic Mass of Au}_{z,F} = \frac{(1.93 \times 10^7 g m^{-3}) * (1.30 \times 10^{-22} m^3)}{(1.97 \times 10^2 g mol^{-1})} * 1 *$

 $Q = 1.2 \times 10^{-12} C per single AuNP$

Expected charge for one-monolayer (contains 5 x 10⁸ NPs): Q_{Expected} = (1.2 x 10⁻¹² C NPs⁻¹) * (5 x 10⁸ NPs) = *ca*. 600 μ C

[CN ⁻] / mM Experimental Charge (Q _{Exp}) / μ C	% Converted AuNP
---	------------------

	1.0	9.6	<i>ca</i> . 1.6%
5.0 12.5			ca. 2.1%
15.0 28.7		28.7	ca. 4.8%
35.0 37.1		37.1	ca. 6.2%
	50.0	47.0	ca. 7.8%

b) Nano-impact Experiments (assuming 1e⁻ transfer) Density of Au + V

	(Density of Au * V _{AuNP})	
Number of Au atom per particle	$= \left(\overline{Atomic Mass of Au} \right) *$	Avogadro's
number	= 7.6 x 10 ⁶ atoms per particle	

Number of Au particle added in the system = 0.7 ml * 2.61 x 10^{10} NPs.mL⁻¹ = 1.8×10^{10} NPs

Number of Au atoms (the number of species undergoing electrochemical process):

= 7.6×10^6 atoms per particle x (1.8×10^{10} NPs)

Expected charge, Q $_{\rm Expected}$, for 0.7 ml AuNPs suspension (each atom transfers 1.602 x 10 $^{\rm -19}$ C):

= 1.4 x 10^{17} atoms * 1.602 x 10^{-19} C atom⁻¹

= 0.02 C (overall)

Expected charge, Q _{Expected}, for a single particle is

 $\frac{0.02 C}{1.8 \times 10^{10} \text{ particle}}$

= 1.1 x 10⁻¹² C per single AuNP level

[CN ⁻] / mM	Experimental Charge (Q Exp) / pC	% Converted AuNP		
1.0 0.29		<i>ca</i> . 26.4%		
5.0	0.55	<i>ca</i> . 50.0%		
15.0	0.76	ca. 69.1%		
35.0	1.03	ca. 93.6%		
50.0	1.04	ca. 94.2%		

Characterization of Gold Nanoparticles

Figure SI.1. Characterization of the AuNP using (a) DLS, (b) NTA and (c) zeta potential. **Electrochemical Analysis of AuNPs-GCE by Cyclic Voltammetry: Study of Surface Coverages**

Figure SI.2. Surface concentration assessment of AuNPs-GCE immersed in 5.0 mM KCN + 10 mM NaOH at a scan rate of 0.1 V s⁻¹. (a) Voltammograms of AuNPs-GCE at various surface concentrations. (b) Linear peak current of peak 2 behaviour against surface concentration shown in (a).

Electrochemical Analysis of AuNPs-GCE by Cyclic Voltammetry: Study of Scan Rate Dependency

Figure SI.3. Representative voltammograms of one-monolayer AuNPs-GCE immersed in 10 mM NaOH, 5.0 mM and 50.0 mM KCN at a scan rate of 0.1 V s⁻¹ (showing the original voltammograms, after polynomial (order-6) baseline correction and linear peak current behaviour against scan rates).

Electrochemical Analysis of AuNPs-GCE by Cyclic Voltammetry: Study of Successive Scans

Figure SI.4. Representative successive scans of one-monolayer AuNPs-GCE immersed in (a) 1.0 mM KCN, (b) 5.0 mM, (c) 15.0 mM, (d) 50 mM KCN-containing 10 mM NaOH at a scan rate of 0.1 V s^{-1} .

Impact-Chemistry of Single Gold Particle

Figure SI.5. Representative chronoamperograms of 7.0 μ m carbon microelectrode immersed in solution of (a) *ca*. 42.0 pM AuNP + 10 mM NaOH (without KCN) at varying potential of 0.3 V to 1.2 V. (b) 1.0 to 50.0 mM KCN + 10 mM NaOH (without AuNPs) at potential of 1.0 V.

Figure SI.6. Representative chronoamperograms of *ca*. 42.0 pM AuNP immersed in 5.0 mM KCN + 10 mM NaOH at a potential of 1.0 V vs SCE. No spikes were observed both using (a) nominally 12 nm AuNPs and (b) nominally 20 nm AuNPs.

Table 1.	Comparative	result	between	nanoparticle	ensemble	(CV	experiments)	and	single	particle
level (im	pact-chemistry	y expe	riments)							

[CN ⁻]/	CV Expe	eriments	Nano-impact Experiments					
mM	1 st Scan Total Scan		% Conv.	Charge	Current	FWHM	Freq.	
	(% Conv)			(pC)	(pA)	(ms)	(N _{Spike} s ⁻¹)	
1.0	0.6	1.6	26.4	0.29	3.05	50.12	0.09	
5.0	1.3	2.2	50.0	0.55	4.50	31.05	0.15	
15.0	2.7	4.8	69.1	0.76	6.22	20.22	0.17	
35.0	4.6	6.2	93.6	1.01	8.95	13.33	0.22	
50.0	6.2	7.8	94.2	1.02	10.05	11.05	0.24	