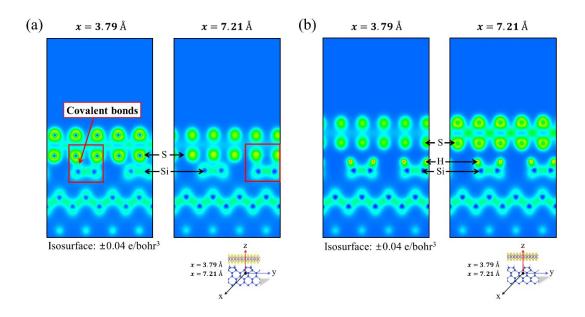
ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Mixed-dimensional 2D/3D heterojunctions between MoS₂ and Si(100)

Hyunsoo Choi,^{†a} Kyung-Ah Min,^{†a} Janghwan Cha^a and Suklyun Hong^{*a}

^a Department of Physics and Graphene Research Institute, Sejong University, Seoul 05006, Korea

[†] These authors contributed equally to this work.


* Author to whom any correspondence should be addressed.

E-mail: hong@sejong.ac.kr

1. Electronic charge densities of MoS₂/Si heterostructures

To identify the electronic charge densities of MoS_2/Si heterostructures depending on the interaction between two contact materials, we obtain electronic charge densities of (a) $MoS_2/clean Si(100)$ and (b) MoS_2/H -covered Si(100) heterostructures in Fig. S1; especially, we obtain cross sectional electronic charge densities at x = 3.79 and 7.21 Å (See inset of Fig. S1 for details.). Our calculations show that for the case of $MoS_2/clean Si(100)$ heterostructure, MoS_2 is hybridized with clean Si(100) due to the strong covalent bonds between S and Si atoms, as shown in Fig. S1(a). On the other hand, S atoms of MoS_2 and H atoms of H-covered Si(100) are not hybridized each other, as shown in Fig. S1(b), indicating the weak van der

Waals (vdW) interaction between them. As a result, we identify that electronic charge densities can be different depending on the binding behaviors between two contact materials.

Fig. S1 Cross sectional electronic charge densities of (a) MoS_2 /clean Si(100) and (b) MoS_2 /H-covered Si(100) at x = 3.79 and 7.21 Å. Here, the isosurface level is ±0.04 e/bohr³.

2. Tunneling probability of MoS₂/clean Si(100) heterojunction

For the MoS₂/clean Si(100) heterostructure which have possibility of metallic contact, we obtain the tunneling probability (T_B) to give the another criterion to the contact characteristics except for the Schottky barrier height (SBH). To estimate the value of T_B , we calculate the electrostatic potential in Fig. S2. By using the height (~1.90 eV) and width (~0.84 Å) of potential barrier between MoS₂ and clean Si(100) in Fig. S2, we obtain T_B of about 30 % using Wentzel-Kramers-Brillouin (WKB) approximation:

$$T_{B} = exp\left(-2 \times \frac{\sqrt{2m\Delta V}}{\hbar} \times w_{B}\right) \times 100 \ (\%)$$

where m, ΔV , and W_B are the electron mass, height and width of tunnel barrier, respectively. It means that electrons can pass through MoS₂/clean Si(100) heterojunctions with the tunneling probability of about 30 %.

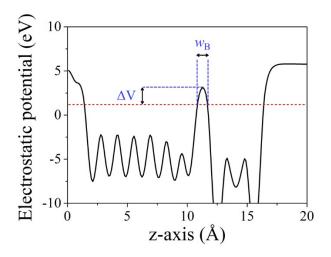


Fig. S2 Electrostatic potential of MoS_2 /clean Si(100) heterostructure. Fermi level is represented by red dashed line.