|           | 0 0 0             | 5                  |
|-----------|-------------------|--------------------|
| Device    | Total Energy (eV) | Edge Energy (eV/Å) |
| 9NC-2NN   | -41540.878        | -0.445             |
| 9NC-3NC   | -45268.016        | -0.571             |
| 9NC-4CC   | -48985.410        | -0.594             |
| 9NC-4NN   | -48989.765        | -0.640             |
| 9NC-5NC   | -52720.729        | -0.806             |
| 9NC-6CC   | -56436.610        | -0.814             |
| 9NC-6NN   | -56445.061        | -0.902             |
| 9NC-7NC   | -60169.398        | -0.999             |
| 9NC-8CC   | -63885.993        | -1.014             |
| 9NC-8NN   | -63894.922        | -1.108             |
| 9NC-3NC-H | -45374.809        | -0.697             |
| 9NC-4NN-H | -49076.346        | -0.720             |

Table S1: Total energies and edge energies for ZC<sub>3</sub>NNR devices.

Edge energies are related to the thermodynamically stable shape in exactly the same way that surface energies are used to predict the equilibrium shape of a three dimensional crystal through the Wulff construction<sup>[1-3]</sup>. Utilizing the method developed by Chee Kwan Gan on edge energy in hydrogenated and unhydrogenated graphene nanoribbons<sup>[2]</sup>, the edge energy of  $C_3N$  model is calculated by the following formula,

 $E_{edge} = \frac{1}{2L} \left[ E_{C_3N+H} - n_1 E_1 - \frac{n_H E_{H_2}}{2} \right], \text{Where } L \text{ is the length of } ZC_3 \text{NNR}$ device,  $E_{C_3N+H}$  is the total energy of the ZC\_3 NNR device which contains  $n_1$  atomic combinations of C\_3N, and  $E_1$  is the energy per atomic combination of C\_3N in the infinite, flat C\_3N sheet with the lattice parameter that minimizes the energy.  $E_{H_2}$  is the energy of the H<sub>2</sub> molecule, and  $n_H$  is the total number of H atoms.



Fig. S1 (a) Schematic illustration of 5NC ZC<sub>3</sub>NNR. The unit cell is omitted. Nitrogen, carbon and hydrogen atoms are shown by blue, gray and white balls, respectively. (b) The projected density of state (PDOS) as a function of energy for the 5NC ZC<sub>3</sub>NNR.





Fig. S2 Band structures around the Fermi level of (a) XCC; (b) XNC and (c) XNN  $ZC_3NNRs$ . X ranges from 2 to 13. The blue dotted line is the Fermi level.

| Edge morphology         | ZC <sub>3</sub> NNR | Property      | 9NC- heterojunction |
|-------------------------|---------------------|---------------|---------------------|
|                         | 4CC                 | Metal         | Rectification       |
| All-carbon              | 6CC                 | Metal         | Rectification, NDR  |
|                         | 8CC                 | Metal         | NDR                 |
|                         | 3NC                 | Metal         | Rectification       |
| One edge has N atoms    | 5NC                 | Metal         | NDR                 |
|                         | 7NC                 | Metal         | NDR                 |
|                         | 2NN                 | Semiconductor | Rectifier diode     |
| Both edges have N atoms | 4NN                 | Semiconductor | Rectifier diode     |
|                         | 6NN                 | Semiconductor | Rectifier diode     |
|                         | 8NN                 | Semiconductor | Rectifier diode     |

Table S2: A summary of the structures and properties of ZC<sub>3</sub>NNRs.



Fig. S3 Schematic illustrations of 9NC-3NC-H and 9NC-4NN-H devices with a point defect around the step, labeled as (a) 9NC-3NC-H-D and (b) 9NC-4NN-H-D, respectively. The I-V curves of (c) 9NC-3NC-H and 9NC-3NC-H-D devices; (d) 9NC-4NN-H and 9NC-4NN-H-D devices in the bias range from -1.0 to 1.0 V.

In Fig. S3 (a) and (b), both 9NC-3NC-H and 9NC-4NN-H devices have a point defect around the step, labeled as 9NC-3NC-H-D and 9NC-4NN-H-D, respectively. After optimization, a five-membered ring and a nine-membered ring are formed at the point vacancy of the 9NC-3NC-H-D, however the structural change at the point vacancy of 9NC-4NN-H-D is not obvious.

In Fig. S3(c), it can be seen that the presence of a point defect causes a very small change in the I-V curve of the 9NC-3NC-H device, indicating that the point defect here does not affect its electronic transport property. For the 9NC-4NN-H device, as shown in Fig. S3(d), the presence of a point defect causes an obvious increase in the forward-conducting current, while a little increase in the reverse current under high bias, so the forward-conducting and reverse-blocking rectifier diode behavior is still very significant. Therefore, such a point defect near the step does not change the overall electronic transport properties of the step-like  $ZC_3N$  devices.

## Supplementary References

- A. Pimpinelli and J. Villain, Physics of Crystal Growth Cambridge University Press, United Kingdom, 1998.
- 2. Gan C K, Srolovitz D J. First-principles study of graphene edge properties and flake shapes. Physical Review B, 2010, 81:125445.
- Koskinen P, Malola S, Häkkinen H. Self-passivating edge reconstructions of graphene. Physical Review Letters, 2008, 101(11): 115502.