Electronic Supplementary Information for

Competition between hydrogen bonds and van der Waals forces in

intermolecular structure formation of protonated branched-chain

alcohol clusters

Natsuko Sugawara,¹ Po-Jen Hsu,² Asuka Fujii,^{*1} and Jer-Lai Kuo^{*2}

¹Department of Chemistry, Graduate School of Science, Tohoku University,

Sendai 980-8578, Japan

²Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

E-mail: asuka.fujii.c5@tohoku.ac.jp (A.F.), jlkuo@pub.iams.sinica.edu.tw (J.-L.K.).

Contents

Fig. S1	Temperature-dependent relative population of $H^+(MeOH)_n$ (<i>n</i> = 4 - 8).
Fig. S2	Temperature-dependent relative population of $H^+(2-PrOH)_4$.
Fig. S3	Temperature-dependent relative population of $H^+(t-BuOH)_n$ ($n = 4 - 8$)
Fig. S4	Relative energies of structurally distinct isomers for H ⁺ (MeOH) ₄ .,
	H ⁺ (EtOH) ₄ , H ⁺ (2-PrOH) ₄ , and H ⁺ (<i>t</i> -BuOH) ₄ .
Figs. S5-S9	Simulated IR spectra of $H^+(MeOH)_n$ ($n = 4 - 8$).
Fig. S10	Simulated IR spectra of H ⁺ (2-PrOH) ₄ .
Figs. S11-S15	Simulated IR spectra of $H^+(t-BuOH)_n$ ($n = 4 - 8$).
Fig. S16	The minimum free energy structures of $H^+(2\text{-PrOH})_4\text{-B3LYP}$ and
	$H^+(t-BuOH)_4$ -B3LYP.
Figs. S17-S20	The minimum free energy structures of H ⁺ (<i>t</i> -BuOH) _n -B3LYP+D3
	(n = 4 - 8).

Fig. S1 Temperature-dependent relative population of $H^+(MeOH)_n$ (n = 4 (top) – 8 (bottom)). From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S2 Temperature-dependent relative population of $H^+(2-PrOH)_4$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S3 Temperature-dependent relative population of $H^+(t-BuOH)_n$ (n = 4 (top) – 8 (bottom)) From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3. In (c), (d), and (e), the relative population of the L structures are always 1 because they are much more stable than other structures.

Fig. S4 The zero-point corrected relative energies of structurally distinct isomers of protonated alcohol tetramers. From top to bottom, $H^+(MeOH)_4$ (a-c), $H^+(EtOH)_4$ (d-f), $H^+(2-PrOH)_4$ (g-i), and $H^+(t-BuOH)_4$ (j-l). From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3. The abscissa is the numbering of the isomers. Two types of isomers are shown (C type = green and L type = red).

Fig. S5 Simulated IR spectra of $H^+(MeOH)_4$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S6 Simulated IR spectra of $H^+(MeOH)_5$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S7 Simulated IR spectra of $H^+(MeOH)_6$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S8 Simulated IR spectra of $H^+(MeOH)_7$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S9 Simulated IR spectra of $H^+(MeOH)_8$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S10 Simulated IR spectra of $H^+(2-PrOH)_4$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S11 Simulated IR spectra of $H^+(t-BuOH)_4$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S12 Simulated IR spectra of $H^+(t-BuOH)_5$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S13 Simulated IR spectra of $H^+(t-BuOH)_6$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S14 Simulated IR spectra of $H^+(t-BuOH)_7$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S15 Simulated IR spectra of $H^+(t-BuOH)_8$. From the left to the right column, the levels of theory are B3LYP/6-31+G*, ω B97X-D/6-311+G(2d,p), and B3LYP/6-31+G*+D3.

Fig. S16 The minimum free energy isomer structures of $H^+(2-PrOH)_4$ -B3LYP (a and b) and $H^+(t-BuOH)_4$ -B3LYP (c and d). The former is represented by (a) C structure at 50K and (b) L structure at 250K. The latter is represented by (c) C structure at 50K and (b) L structure at 400K. The corresponding zero-point corrected relative energies are (a) 0.064, (b) 0.656, (c) 0 and (d) 1.045 kcal/mol.

Fig. S17 The minimum free energy structures of $H^+(t-BuOH)_5$ -B3LYP+D3. From (a) to (c) are Ct structure at 50K, C structure at 150K, and L structure at 400K. The corresponding zero-point corrected energies are (a) 0, (b) 1.211, and (c) 3.423 kcal/mol.

Fig. S18 The minimum free energy structures of $H^+(t-BuOH)_6$ -B3LYP+D3. From (a) to (d) are **bC** structure at 50K, **Ct** and **C** structures at 300K, and **L** structure at 400K. The corresponding zero-point corrected energies are (a) 0, (b) 1.086, (c) 1.588, and (d) 4.923 kcal/mol.

Fig. S19 The minimum free energy structures of $H^+(t-BuOH)_7$ -B3LYP+D3. From (a) to (c) are Ct structure at 50K, bC structure at 150K, and L structure at 300K. The corresponding zero-point corrected energies are (a) 0, (b) 0.462, and (c) 4.268 kcal/mol.

Fig. S20 The minimum free energy structures of $H^+(t-BuOH)_8$ -B3LYP+D3. From (a) to (c) are **bC** and **Ct** structures at 50K and **L** structure at 400K. The corresponding zero-point corrected energies are (a) 0, (b) 0.31, and (c) 4.172 kcal/mol.