Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

## SUPPORTING INFORMATION

# Conformation of Bis-nitroxide Polarizing Agents by Multi-frequency EPR Spectroscopy

Janne Soetbeer,<sup>a+</sup> Peter Gast,<sup>b</sup> Joseph J. Walish,<sup>c</sup> Yanchuan Zhao,<sup>c</sup> Christy George,<sup>a</sup> Chen Yang,<sup>a</sup> Timothy M. Swager,<sup>c</sup> Robert G. Griffin,<sup>a</sup> and Guinevere Mathies<sup>a\*§</sup>

<sup>a.</sup> Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

<sup>b.</sup> Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands.

<sup>c.</sup> Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

<sup>\*</sup> To whom correspondence should be addressed.

<sup>+</sup> Current address: Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

<sup>§</sup> Current address: Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany

### Contents

| Alignment of J- and D-band spectra                                      | S2 |
|-------------------------------------------------------------------------|----|
| Subtracting the mono-nitroxide contributions for BTamide and BTamide-py | S3 |
| Fitting error plots                                                     | S4 |
| Simulation of bis-nitroxide X                                           | S6 |
|                                                                         |    |

## Alignment of J- and D-band spectra



Figure SI-1: EPR spectra of AMUPol in glycerol/water (a,b) and BTurea in DMSO/water (c,d) at X, D, and J band plotted together with spectra of their corresponding mono-nitroxides. On the D-band spectrometer, the field positions are crosschecked during the field sweep with the <sup>1</sup>H NMR resonance from a water sample located near the actual sample, which allows accurate determination of the g-values. In (b) and (d), D- and J-band spectra are plotted with the g-values on the xaxis. The J-band spectra are aligned with the D-band spectra at  $g_z$ .



#### Subtracting the mono-nitroxide contributions for BTamide and BTamide-py

Figure SI-2: Illustration showing subtraction of mono-nitroxide contributions to the X, D, and J-band spectra of BTamide (a) and BTamide-py (b) in DMSO/water. We suspected that the features in the D- and J-band spectra marked with \* were due to a fraction of one-sided reduced BTamide(-py) present in the samples. This was confirmed by a J-band spectrum (not shown) recorded on a BT-amide-py sample that had been stored at room temperature for several weeks, which showed a marked increase of all features associated with the mono-nitroxide. Before entering the fitting procedure the mono-nitroxide fractions were quantified and subtracted from the BTamide and BTamide-py spectra in an iterative process. First, the simulated TEMPONE(-py) spectra in DMSO/water (Figure 2 in the main manuscript) were subtracted from the experimental spectra of BTamide(-py). The sums of the simulated BTamide(-py) and TEMPONE(-py) spectra were compared to the original experimental spectra to optimize  $f_{MONO}$ . The simulated TEMPONE(-py) spectra were then resubtracted from the experimental spectra with the optimized  $f_{MONO}$  and the resulting spectra entered the fitting routine again. This procedure was repeated until no changes in  $f_{MONO}$  were observed.

**Fitting error plots** 





Figure SI-3a-I: Fitting errors  $\chi^2$  as a function of  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\eta$ ,  $\xi$ ,  $r_{12}$ , J, and  $g_x$  for BTamide (a,b), BTamide-py (c,d), and BTurea (e,f) in DMSO/water and for BTurea (g,h), PyPol (i,j), and PyPoldiMe (k,l) in glycerol/water. The black, blue, orange, and yellow curves show  $\chi^2_{tot}$ ,  $\chi^2_x$ ,  $\chi^2_D$ , and  $\chi^2_J$ , respectively. The solid, red circles indicate the global minima of  $\chi^2_{tot}$  (minimum values of  $\chi^2_{tot}$  are 0.039, 0.045, 0.025, 0.022, 0.035, 0.031, respectively), the solid, black circles indicate alternative, but not chemically feasible minima. For BTamide and BTurea in DMSO/water and glycerol/water, respectively, where all three angles  $\alpha$ ,  $\beta$ ,  $\gamma$  display double minima, possible combinations of minima were tested systematically to determine which parameter set produced the best fit. In the 2D plots, the minima of  $\chi^2_x$ ,  $\chi^2_D$ , and  $\chi^2_I$  are marked by red, open circles.

## Simulation of bis-nitroxide X



Figure SI-4a-c: (a) Calculated spectra (magenta) at X, D and J band of hypothetical bis-nitroxide X together with simulations (black). (b,c) Fitting errors  $\chi^2$  as a function of  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\eta$ ,  $\xi$ ,  $r_{12}$ , J, and  $g_x$  for bis-nitroxide X with a minimum value of  $\chi^2_{tot}$  of 0.0037. The parameters used to calculate the spectra of bis-nitroxide X are listed in Table SI-1 below, together with the starting parameters of the fitting routine and the final parameters used for the simulations in (a).

## Table SI-1: Blind-test results of the fitting routine.

|                           | Bis-nitroxide X parameters | Starting parameters fitting routine | Final parameters fitting routine |
|---------------------------|----------------------------|-------------------------------------|----------------------------------|
| α                         | 90                         | 65                                  | <b>72</b> ±28                    |
| β                         | 56                         | 69                                  | <b>57</b> ±45                    |
| γ                         | 115                        | 91                                  | <b>105</b> ±90                   |
| η                         | 155                        | 191                                 | <b>138</b> ±35                   |
| ξ                         | 55                         | 84                                  | <b>54</b> ±53                    |
| r <sub>12</sub> [Å]       | 11.5                       | 10                                  | <b>11.6</b> ±0.3                 |
| J [MHz]                   | -18                        | -8.4                                | <b>-19.4</b> ±1.5                |
| $g_x$                     | 2.0091                     | 2.0087                              | <b>2.0091</b> ±0.0005            |
| $g_y$                     | 2.00615                    | 2.0060                              | 2.00615                          |
| $g_z$                     | 2.00215                    | 2.0021                              | 2.00215                          |
| A <sub>x</sub>            | 17.5                       | 12.5                                | 17.5                             |
| Ay                        | 17.5                       | 12.5                                | 17.5                             |
| Az                        | 98                         | 103.6                               | 99                               |
| f                         | 0.08                       | 0.08                                | 0.09                             |
| Linewidth Gaussian [mT]   | 0.6                        | 0.8                                 | 0.9                              |
| Linewidth Lorentzian [mT] | 0.4                        | 0                                   | 0                                |