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S1. Samples Preparation and Zeta Potential Measurements 

Commercially obtained silica particles (Seahostar KE-W10, Nippon Shokubai Co. Ltd.) were 

suspended in a mixture of ethylene glycol and glycerol. Because of the deprotonation reaction of 

hydroxyl groups on its surface, the silica nanoparticle used in our study is negative charged. To 

bypass the crystallization induced by shear, we used the mixture of silica particles with diameter 

of 120 nm and 80 nm respectively. The number density ratio of 120 nm particle to 80 nm particle 

was 4 to 1. The total volume fraction of the silica particles was 0.4 and the mass ratio of the 

ethylene glycol to glycerol mixture was 2.27 to 1 according to reference (S1). By adjusting the 

proton to deuterium ratio, the scattering length density of the solvent was set to be 5 × 10−6 𝑐𝑚−2 

to avoid the possible multiple scattering. This is crucial to the experiment, as demonstrated in 

Figure S1. 

 

 

Figure S1. Effect of multiple scattering. Panel (a) gives the two I(Q) of the colloidal suspension 

in this experiment. Red points denote the data obtained from the 1 - 2 plane (the path length of 

neutron is 5 mm), black points denote the data obtained from the 1 - 3 plane (the path length of 

neutron is 1 mm). In this case, the two curves are very close to each other. As seen in panel (a), by 

carefully choosing the proton to deuterium ratio of the solvent, we can avoid the multiple scattering 

effect. Panel (b) gives the two I(Q) of a colloidal suspension with fully protonated solvent as used 

in reference (S1). It is seen that the multiple scattering from the 1 - 2 plane is very significant. In 

this case, multiple scattering signal dominates the measured spectrum at high Q, which makes the 

quantitative analysis impossible. 

 

The zeta potential measurement was carried out to quantify the long-range electrostatic repulsion 

among the silica particles. The zeta potential is found to be −30.49 mV and the surface charge 

density is found to be 3.3 × 10−3 C/m2.  

 

S2. Small-Angle Neutron Scattering Experiment and Data Analysis 

Small-angle neutron scattering (SANS) measurements were respectively performed at the D22 

SANS spectrometer at the ILL and at the NG7 SANS instrument at the NCNR NIST. The 



wavelength of the incident neutron beam was chosen to be 8.0 Å, with a wavelength spread 
∆𝜆

𝜆
 of 

10%, to cover values of the scattering wave vector 𝑄  ranging from 10−3  to 10−1  Å-1. The 

measured intensity 𝐼(𝑄)  was corrected for detector background and sensitivity and for the 

scattering contribution from the empty cell and placed on an absolute scale using a direct beam 

measurement. All of the SANS measurements at ILL and NCNR were carried out at 20.0 ± 0.1 oC. 

Both 1 - 2 (S3) and 1 - 3 (S4) configurations of shear cells were used to investigate the flow 

structure. The range of shear rate is from 1 to 103 s−1. 

The coherent scattering intensity 𝐼(𝑸) from SANS measurements on colloidal suspensions can be 

expressed as: 

𝐼(𝑸) = 𝑛𝑉2Δ𝜌2𝑃(𝑄)𝑆(𝑸)                                                                                                         (S1) 

where 𝑛 is the particle number density; 𝑉, the volume of an individual colloidal particle; Δ𝜌, the 

contrast term; 𝑃(𝑄), the normalized form factor; and 𝑆(𝑸), the inter-particle structure factor. In 

this study, the system is composed of two kinds of particles with diameters of 120 nm and 80 nm. 

The number density ratio between the large particles and small particles is 4:1. With these 

knowledges, it is able to estimate the SANS intensities contributed from these two kinds of 

particles by: 𝐼large/𝐼small = 𝑛large𝑉large
2 /𝑛small𝑉small

2 ≈ 45. It is seen that the SANS intensity is 

dominated by the contribution from the large particles. Therefore, we can reasonably ignore the 

contribution from small particles, and obtain the landscape of the structure factor of the large 

particles by dividing the measured intensity 𝐼(𝑸) by the form factor of the large particle 𝑃large(𝑄): 

𝑆large(𝑸) ∝ 𝐼(𝑸)/𝑃large(𝑄).  

In quiescent state, it is also able to find 𝑆(𝑄) by model fitting. For the form factor of the silica 

particles we used the analytical equations of a spherical particle. The corresponding 𝑆(𝑄) is 

obtained numerically by solving the Ornstein-Zernike equation with the MPB-RMSA (S5) closure 

for a repulsive Yukawa potential. The values of 𝐾 and 𝑧 were used as inputs in our BD simulation. 

For the sample in its quiescent state, the neutron scattering profile is isotropic. The system in this 

study, however, is apparently anisotropic due to external shear. Consequently, the scattering 

profile does not only depend on the magnitude of momentum transfer but also its direction. It is 

understandable that the anisotropy arises from shear-induced angular dependent particle packing 

reflected by 𝑆(𝑸) rather than the deformation of silica particles.  

The framework of describing the flow-induced structural anisotropy on the basis of spherical 

harmonic expansion has been first proposed Hess (S6) and has been commonly used to analyze 

the microstructural distortion of sheared materials observed by computer simulations and 

scattering experiments. However it is instructive to indicate a subtle but critical difference between 

its implementation in trajectory analysis of computational results and that for extracting the 

structural distortion from scattering experiments: For computational studies the determination of 

the expansion coefficients, namely the anisotropic pair distribution function (APDF) 𝑔𝑙
𝑚(𝑟) or 

anisotropic structure factor 𝑆𝑙
𝑚(𝑄) , from the computationally generated 3D trajectory is 

conveniently facilitated by the orthogonality of the real spherical harmonic basis functions. 

However, for scattering experiments, the information of 3D distorted structure is projected onto 

the 2D detector arrays. The orthogonality cannot be directly applied to extract 𝑔𝑙
𝑚(𝑟) since the 

spherical harmonics no longer form an orthonormal basis set on 1 - 2 and 1 - 3 planes. Therefore 

additional normalization is required to unbiasedly extract the expansion coefficients.           



We have developed the framework for properly analyzing the anisotropy of structure factor from 

the measured 2D spectra. 𝑆(𝑸) can be expanded in the following expression: 

𝑆(𝑸) = ∑ 𝑆𝑙
𝑚(𝑄)𝑌𝑙

𝑚(𝛀)𝑙,𝑚                                                                                                         (S2) 

where 𝛀  is solid angle (𝑑Ω = 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 ) , 𝑄 = √𝑄𝑥2 + 𝑄𝑦2 + 𝑄𝑧2 , and 𝑌𝑙
𝑚  is the spherical 

harmonic function of degree l and order m. Each of them characterizes a well-defined symmetry 

and is referred to as a specific mode hereafter. It is defined as: 

𝑌𝑙
𝑚(𝛀) = 𝑌𝑙

𝑚(𝜃, 𝜙) =

{
 
 

 
 √2√(2𝑙 + 1)

(𝑙−|𝑚|)!

(𝑙+|𝑚|)!
𝑃𝑙
|𝑚|(cos𝜃)sin(|𝑚|𝜙)   (𝑚 < 0)

√2𝑙 + 1𝑃𝑙
0(cos𝜃)   (𝑚 = 0)

√2√(2𝑙 + 1)
(𝑙−𝑚)!

(𝑙+𝑚)!
𝑃𝑙
𝑚(cos𝜃)cos(𝑚𝜙)   (𝑚 > 0)

  

Where 𝑃𝑙
𝑚 are associated Legendre polynomials. Here we list the first few spherical harmonic 

functions in real form: 

𝑌0
0(𝜃, 𝜙) = 1                                                                                                                               (S3) 

𝑌1
−1(𝜃, 𝜙) = √3𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙                                                                                                          (S4) 

𝑌1
0(𝜃, 𝜙) = √3𝑐𝑜𝑠𝜃                                                                                                                    (S5) 

𝑌1
1(𝜃, 𝜙) = √3𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙                                                                                                            (S6)  

𝑌2
−2(𝜃, 𝜙) =

√15

2
𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜙                                                                                                     (S7) 

𝑌2
−1(𝜃, 𝜙) = √15𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙                                                                                                (S8) 

𝑌2
0(𝜃, 𝜙) =

√5

2
(3𝑐𝑜𝑠2𝜃 − 1)                                                                                                      (S9) 

𝑌2
1(𝜃, 𝜙) = √15𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙                                                                                                (S10) 

𝑌2
2(𝜃, 𝜙) =

√15

2
𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜙                                                                                                     (S11) 

In three-dimensional space the spherical harmonic functions are mutually orthogonal, meaning 

∫𝑑Ω𝑌𝑙
𝑚(Ω) 𝑌𝑙′

𝑚′
(Ω) = 4𝜋𝛿𝑙𝑙′𝛿𝑚𝑚′                                                                                          (S12) 

The spherical harmonic functions have well defined parity, which is expressed as follows: 

𝑌𝑙
𝑚(𝜃, 𝜙) → 𝑌𝑙

𝑚(𝜋 − 𝜃, 𝜋 + 𝜙) = (−1)𝑙𝑌𝑙
𝑚(𝜃, 𝜙)                                                                 (S13) 

It is seen that the parity of the harmonic function is determined by l. 

Within the accessed range of shear rate we found that the contribution from terms with l = 3,…,∞ 

to 2D scattering pattern is negligible. Therefore, eq. S2 can be effectively simplified to: 

𝑆(𝑸) = ∑ ∑ 𝑆𝑙
𝑚(𝑄)𝑌𝑙

𝑚(𝛀)𝑚
2
𝑙=0                                                                                                (S14) 

In the 1 - 2 plane, it is conceivable that 𝑄𝑧 = 0, or 𝜃 = 𝜋/2. Therefore,  𝑌2
−1 and 𝑌2

1, and their 

coefficients 𝑆2
−1 and 𝑆2

1, are 0. In addition, as shown in Figure 2 in the main text, all 2D patterns 

in the 1 - 2 plane exhibit even parity. It requires that the coefficients of the spherical harmonics 



with odd parity should be 0. In this case, it leads to 𝑆𝑙=1
𝑚 = 0. In fact, it is convenient to demonstrate 

that the modes with l = 1 are 0 when angular average is made. 

With above considerations, the general expression for the 1-2 plane is obtained as follows: 

𝑆(𝑄𝑥, 𝑄𝑦, 𝑄𝑧 = 0) = 𝑆0
0(𝑄)𝑌0

0(Ω) + 𝑆2
−2(𝑄)𝑌2

−2(Ω) + 𝑆2
0(𝑄)𝑌2

0(Ω) + 𝑆2
2(𝑄)𝑌2

2(Ω)           (S15) 

It is important to note that in one specific two-dimensional plane, such as the 2D detector-array 

plane, the orthogonality among spherical harmonic functions may not hold any more. In this case, 

𝑌0
0  and 𝑌2

0  are both isotropic in 1 - 2 plane and are related by 
𝑌2
0

𝑌0
0 = −√

5

4
. Therefore the above 

expression can be rewritten as: 

𝑆(𝑄𝑥, 𝑄𝑦, 𝑄𝑧 = 0) = [𝑆0
0(𝑄) − √

5

4
𝑆2
0(𝑄)] 𝑌0

0(Ω) + 𝑆2
−2(𝑄)𝑌2

−2(Ω) + 𝑆2
2(𝑄)𝑌2

2(Ω)            (S16) 

It is important to understand which modes are included in the 2D scattering pattern when the 

angular average weighted with the spherical harmonic function is made 

𝑆𝑙𝑚
𝑥𝑦(𝑄) =

1

4𝜋
∫𝑑ΩS(𝑄𝑥, 𝑄𝑦 , 𝑄𝑧 = 0)𝑌𝑙

𝑚(Ω)                                                                           (S17)        

where 𝑄 = √𝑄𝑥2 + 𝑄𝑦2.  

With above considerations, it is easy to obtain the results for spherical harmonics expansion in 1 -

 2 plane:  

 𝑆00
𝑥𝑦(𝑄) =

1

2𝜋
∫ 𝑆 (𝑄, 𝜃 =

𝜋

2
, 𝜙) 𝑌0

0 (𝜃 =
𝜋

2
, 𝜙) 𝑑𝜙

2𝜋

0
=

1

2𝜋
∫ 𝑆 (𝑄, 𝜃 =

𝜋

2
, 𝜙) 𝑑𝜙

2𝜋

0
  

= 𝑆0
0(𝑄) − √

5

4
𝑆2
0(𝑄),                                                                                                               (S18) 

 𝑆2,−2
𝑥𝑦 (𝑄) =

1

2𝜋
∫ 𝑆 (𝑄, 𝜃 =

𝜋

2
, 𝜙) 𝑌2

−2 (𝜃 =
𝜋

2
, 𝜙) 𝑑𝜙

2𝜋

0
=

1

2𝜋
∫ 𝑆 (𝑄, 𝜃 =

𝜋

2
, 𝜙)

√15

2
sin(2𝜙)𝑑𝜙

2𝜋

0
  

=
15

8
𝑆2
−2(𝑄),                                                                                                                              (S19) 

𝑆22
𝑥𝑦(𝑄) =

1

2𝜋
∫ 𝑆 (𝑄, 𝜃 =

𝜋

2
, 𝜙) 𝑌2

2 (𝜃 =
𝜋

2
, 𝜙) 𝑑𝜙

2𝜋

0
=

1

2𝜋
∫ 𝑆 (𝑄, 𝜃 =

𝜋

2
, 𝜙)

√15

2
cos(2𝜙)𝑑𝜙

2𝜋

0
  

=
15

8
𝑆2
2(𝑄),                                                                                                                               (S20)  

where 𝑸 = (𝑄𝑐𝑜𝑠𝜙, 𝑄𝑠𝑖𝑛𝜙, 𝑄𝑧 = 0).  This demonstrates that the isotropic component in 2D 

scattering pattern 𝑆0
𝑥𝑦

 includes both 𝑆0
0(𝑄) and 𝑆2

0(𝑄), while other components are identical to 

those for 3D. 

Similar considerations can also be applied to the analysis of the 2D patterns in 1 - 3 plane. After 

eliminating the terms breaking the even parity and the terms containing 𝑠𝑖𝑛𝜙 or 𝑠𝑖𝑛2𝜙, one can 

obtain the following expansion for 1 - 3 plane: 

𝑆(𝑄𝑥, 𝑄𝑦 = 0,𝑄𝑧) = 𝑆0
0(𝑄)𝑌0

0(Ω) + 𝑆2
0(𝑄)𝑌2

0(Ω) + 𝑆2
2(𝑄)𝑌2

2(Ω)                                       (S21) 

From Eqs. (S3) - (S11), and Eqn. (S21), it is straightforward to obtain the following results for 

spherical harmonics expansion in 2D pattern: 



𝑆00
𝑥𝑧(𝑄) =

1

2
∫ 𝑑𝜃𝑠𝑖𝑛𝜃𝑆(𝑄𝒙, 𝑄𝑍) = 𝑆0

0(𝑄) + √
15

9

𝜋

0
𝑆2
2(𝑄),                                                      (S22) 

𝑆2,0
𝑥𝑧(𝑄) =

1

2
∫ 𝑑𝜃𝑠𝑖𝑛𝜃𝑆(𝑄𝒙, 𝑄𝒛)
𝜋

0
[√

5

4

−𝑄𝑥
2+2𝑄𝑍

2

𝑄2
] = 𝑆2

0(𝑄) − √
1

3
𝑆2
2(𝑄).                                  (S23) 

Clearly we can see that in x-z plane the 𝑆2
2(𝑄)  contributes to both 𝑆00

𝑥𝑧(𝑄)  and 𝑆20
𝑥𝑧(𝑄) . In 

summary, Eqns. (S20) and (S22) allow us to determine isotropic 𝑆0
0(𝑄) as 

𝑆0
0(𝑄) = 𝑆00

𝑥𝑧(𝑄) −
8

3√15
𝑆22
𝑥𝑦(𝑄)                                                                                               (S24) 

Also anisotropic structure functions relevant to the shear flow problem are given by 

𝑆2
−2(𝑄) =

8

15
𝑆2,−2
𝑥𝑦 (𝑄),                                                                                                              (S25) 

and  

𝑆2
2(𝑄) =

8

15
𝑆2,2
𝑥𝑦(𝑄)                                                                                                                   (S26) 

Based on this approach, 𝑆0
0(𝑄)  and 𝑆2

−2(𝑄)  required for generating 𝑔0
0(𝑟)  and 𝑔2

−2(𝑟)  are 

obtained from 1 - 2 and 1 – 3 planes. The results are given in Figures S2 and S3. Then, 𝑔0
0(𝑟) and 

𝑔2
−2(𝑟) can be obtained with the Bessel transform: 

𝑔𝑙
𝑚(𝑟) =

𝑖𝑙

2𝜋2𝜌
∫𝑆𝑙

𝑚(𝑄)𝐽𝑙(𝑄𝑟)𝑄
2𝑑𝑄,  

where 𝐽𝑙(𝑄𝑟) is the spherical Bessel function. 

 

 

Figure S2. Experimental 𝑆0
0(𝑄) as a function of shear rate. The height of the first peak is seen to 

decrease progressive with the increase in shear rate. This observation is consistent with the increase 

of the effective temperature caused by increasing applied steady shear. 𝑔0
0(𝑟)  is obtained by 

Fourier transforming 𝑆0
0(𝑄).  

 



 

Figure S3. Experimental 𝑆2
−2(𝑄) as a function of shear rate. 𝑔2

−2(𝑟) is obtained from 𝑆2
−2(𝑄) via 

inverse spherical Bessel transform.  

 

S3. Brownian Dynamics (BD) Simulation 

Brownian dynamics simulations of binary mixture of 3000 particles was carried out to complement 

the SANS experiment. The algorithm used in this simulation was proposed by Ermak and 

McCammon (S7), without hydrodynamic interactions and with an additional shear flow in the x 

direction. The resulting equation can be written as the following prescription to generate the new 

position  𝑟𝑖(𝑡 + ∆𝑡) from the current position 𝑟𝑖(𝑡), 

𝑟𝑖(𝑡 + ∆𝑡) − 𝑟𝑖(𝑡) = (𝛾̇𝑦𝑖𝑒̂𝑥 + 𝛽𝐷0𝐹𝑖(𝑡))Δ𝑡 + 𝑋𝑖(𝑡),                                                             (S27)  

where 𝛾 ̇ is the shear rate, yi is the coordinate of particle i along the y direction, 𝑒̂𝑥 is the unit vector 

along the x direction, 𝛽 ≡ 1/𝑘𝐵𝑇 is the thermal energy, and with 𝐷0 ≡ (𝑘𝐵𝑇/ζ) being the short-

time self-diffusion coefficients of the particle. The random displacement 𝑋(𝑡) ≡ +𝛽𝐷0𝑓0(𝑡)) is 

extracted from Gaussian distributions with zero mean and variance given by 6𝐷0∆𝑡. 

The interaction between the simulated binary colloidal particles with the electrostatic interaction 

is described by the pairwise repulsive hard-core Yukawa potential. Mathematically, this may be 

written as 

𝑢𝑖𝑗(𝑟) = {
𝐾𝑖𝑗 (

𝜎𝑖𝑗

𝑟
)
36

 , 𝑟 ≤ 𝜎𝑖𝑗 ≡ (𝜎𝑖 + 𝜎𝑗)/2

𝐾𝑖𝑗
𝑒
−𝑧(𝑟−𝜎𝑖𝑗)

𝑟/𝜎𝑖𝑗
, 𝑟 ≥ 𝜎𝑖𝑗

                                                                  (S28-a) 

For hard-sphere colloids, the interparticle potential is written as: 

𝑢𝑖𝑗(𝑟) = {
𝐾𝑖𝑗 (

𝜎𝑖𝑗

𝑟
)
36
 , 𝑟 ≤ 𝜎𝑖𝑗 ≡ (𝜎𝑖 + 𝜎𝑗)/2

0            , 𝑟 ≥ 𝜎𝑖𝑗
                                                                          (S28-b) 

where 𝜎𝑖 𝑎𝑛𝑑 𝜎𝑗 are the diameter of the particles, 𝑧 the screening length, and 𝐾𝑖𝑗 the interaction 

strength. We define the shear velocity to lie in the x direction, the shear gradient to lie in the y 



direction, and the vorticity in the z direction. The simulations were performed in a cubic simulation 

box. In order to avoid crystallization we chose a binary mixture of small A particles and large B 

particles with number density ratio 𝑛𝐴/𝑛𝐵 = 4, radius ratio 𝜎𝐴/𝜎𝐵 = 1.5, 𝐾𝐴 = 𝐾,  𝐾𝐵 = 0.5𝐾 

and 𝐾𝐴𝐵 = 0.75𝐾. The total volume fraction, z and K used in our simulation are 0.4, 9.89 𝑘𝐵𝑇 and 
4.86

𝜎𝐴
 determined from the SANS data analysis, where 𝑘𝐵 is the Boltzmann constant. Applied shear 

was incorporated into the boundary conditions using the ''sliding brick'' boundary conditions of 

Lees and Edwards (S8). The initial configurations were generated using the following procedure: 

First particles were placed randomly in the simulation box with specified density. The overlap 

between the particles were later reduced or eliminated. Once the initial configuration was 

constructed, several thousand cycles were performed to lead the systems to equilibrium, followed 

by at least two million cycles where the data was collected. Throughout this paper we use the 

following reduced units for length (𝑟∗ = 𝑟/𝜎𝐴). The time unit is related to 𝜏0 = 𝜎𝐴
2/6𝐷0, the time 

required for the particle to diffuse a distance of 𝜎𝐴.  

The Eqn. (S27) in reduced units reads,  

𝑟𝑖
∗(𝑡 + ∆𝑡) − 𝑟𝑖

∗(𝑡) = (𝛾̇∗y𝑖
∗𝑒̂𝑥 + 𝐹𝑖

∗(𝑡))Δ𝑡 + 𝑋𝑖
∗(𝑡) ,                                                             (S29) 

where 𝛾 ∗̇ = 𝛾̇𝜏0 , 𝐹
∗ = 𝐹𝜎𝐴/6𝑘𝐵𝑇, the time ∆𝑡∗ = ∆𝑡/𝜏0, and variance < 𝑋(𝑡)𝑋(0) >= ∆𝑡*. The 

dimensionless Péclet number 𝑃𝑒 used in this paper is defined as   

𝑃𝑒 =
𝛾̇𝜎𝐴

2

6𝐷0
= 𝛾̇∗                                                                                                                         (S30) 

During the simulation we calculate the inter-particle stress tensor for a differentiable pairwise-

additive interaction (S9), 

𝜎𝑥𝑦 =
1

2𝑉
∑ ∑

𝑟𝑖𝑗
𝑥𝑟𝑖𝑗

𝑦

𝑟𝑖𝑗

𝑁
𝑗=𝑖

𝑁
𝑖≠𝑗

𝑑𝑢𝑖𝑗(𝑟)

𝑑𝑟𝑖𝑗
                                                                                                  (S31) 

where the subscripts x and y denote the Cartesian component of vector quantities. At finite shear 

rate, the effect of inter-particle stress on the viscosity 𝜂𝐼 is given by 

𝜂𝐼 =< 𝜎𝑥𝑦 >/𝛾̇                                                                                                                         (S32)   

The anisotropic components of the PDF can be calculated thorough the trajectories of particles. 

For example, 

𝑔2
−2(𝑟) =

1

4𝜋𝑟2𝜌𝑁
√15∑

𝑥𝑖𝑗𝑦𝑖𝑗

𝑟𝑖𝑗
2 𝛿(𝒓 − 𝒓𝒋 + 𝒓𝒊)𝑖𝑗                                                                         (S33)                                                                                       

𝑔2
0(𝑟) =

1

8𝜋𝑟2𝜌𝑁
√5∑ [3 (

𝑧𝑖𝑗

𝑟𝑖𝑗
)
2

− 1]  𝛿(𝒓 − 𝒓𝒋 + 𝒓𝒊)𝑖𝑗                                                              (S34) 

𝑔2
2(𝑟) =

1

8𝜋𝑟2𝜌𝑁
√5∑ (

𝑥𝑖𝑗
2 −𝑦𝑖𝑗

2

𝑟𝑖𝑗
2 ) 𝛿(𝒓 − 𝒓𝒋 + 𝒓𝒊)𝑖𝑗                                                                       (S35)  

The structure factor 𝑆(𝑸) can either be performed as a time average of the one-particle average 



𝑆(𝑸) =
1

𝑁
[(∑ cos(𝑸 ∙ 𝒓𝒊)𝑖 )2 + (∑ sin(𝑸 ∙ 𝒓𝒊𝑖 ))2]                                                                    (S36)  

where ri is the position vector of particle I, 𝑁 is the total particle number. The allowed wave-vector 

𝑄 has to be chosen appropriately for the cubic scattering volume (with length L), which is smaller 

than or equal to the periodicity box. To mimic a small angle detector normal to the z-plane the 𝑄 

values 𝑄𝑥 =𝑛𝑥𝑄0 , 𝑄𝑦 =𝑛𝑦𝑄0 , 𝑄𝑧 = 0  with 𝑄0 = 
2𝜋

𝐿
 and 𝑛𝑥, 𝑛𝑦 = 0, ±1, ±2, …  are chosen. 

Detectors normal to the other directions are obtained in a similar way.  

The 𝑔2
−2(𝑟) and −

𝛾0

√15
𝑟
𝑑𝑔(𝑟)

𝑑𝑟
 obtained from trajectories analysis for both the charged colloids and 

hard-sphere colloids are given in Figure S4. For charged colloids, 𝛾0 is determined by 
𝜎𝑥𝑦

𝐺∞
, where 

𝜎𝑥𝑦 is given by Eqn. (S31) and 𝐺∞ is given by the following expression (S10)  

𝐺∞ =
1

15𝑉
∑ ∑ 𝑟𝑖𝑗

−2 𝑑

𝑑𝑟𝑖𝑗
(𝑟𝑖𝑗

4 𝑑

𝑑𝑟𝑖𝑗
𝑢𝑖𝑗)

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1                                                                              (S37)  

𝑔2
−2(𝑟)  and −

𝛾0

√15
𝑟
𝑑𝑔(𝑟)

𝑑𝑟
 are seen to be in quantitative agreement for charged colloids. This 

agreement suggests the existence of the elastic coherency in the flow. For hard-sphere colloids, 

however, the oscillations of these two functions do not match each other:  𝑔2
−2(𝑟) is significantly 

lags behind −
𝛾0

√15
𝑟
𝑑𝑔(𝑟)

𝑑𝑟
. The mismatch between the two quantities indicate the breakdown of the 

TEZ in the HS case at the volume fraction of 0.4. This comparison highlights the key role of the 

interparticle electrostatic repulsion in establishing the TEZ. 

 

 

Figure S4. The comparison between the anisotropic pair distribution function 𝑔2
−2(𝑟)  and 

−
𝛾0

√15
𝑟
𝑑𝑔(𝑟)

𝑑𝑟
 at different shear rate calculated from BD simulation as a function of shear rate and 

Péclet number. 



 

One can also calculate the SANS spectra from the trajectory of BD simulations. We present the 

results for the charged colloids in Figure S5. To compare with the experimental data presented in 

Figure 1, the influence of finite particle size, the so-called form factor 𝑃(𝑄), is also incorporated. 

In both configurations 1 - 2 and 1 - 3 planes, the spectral evolution presented in Figure S5 is seen 

to be qualitatively identical to that of Figure 1. Moreover, in Figure S5(c), it is noticed that the two 

additional spots are developed along the y-axis when 𝛾̇ = 165 s-1 (𝑃𝑒 = 3.3). As demonstrated by 

the movie generated by BD simulation, no discernible formation of layers along the flow direction 

is observed. We therefore conclude that the origin of two spots is the difference in the density 

fluctuation along and perpendicular to the flow direction.  

It is instructive to comment the role of BD simulation in this study: The importance of 

hydrodynamic interactions has been demonstrated by a series of computational (S11-S12) and 

experimental (S13) studies. As far as the simulation of colloidal suspension under shear is 

concerned, the limitations of BD and the superiority of Stokesian dynamics (SD) have been 

thoroughly demonstrated (S14). However the goal of BD was not placed on generating the 

structural and rheological data for rigorously quantitative comparison with scattering and 

rheometry. Instead the focus of BD simulation aims at demonstrating the existence of TEZ and 

providing the initial clue for developing the framework of rheo- and flow-SANS data analysis.  

 

 

Figure S5. The SANS intensity of a charged colloidal suspension subjected to steady shear 

generated by BD. The volume fraction 𝜙 is 0.4. 𝜎A is the particle diameter of the big particle. The 

effect of particle forma factor is also incorporated. Panels (a) to (c) give the spectra obtained from 

the flow-velocity (𝒗-𝛁𝒗 or  1 - 2) gradient plane with shear rate 𝛾̇ = 0, 41.5 and 165 s-1 (𝑃𝑒 = 0, 

0.83 and 3.3) respectively. The ones obtained from flow-vorticity plane (𝒗-𝛚 or 1 - 3) are given 

in panels (d) to (f) for the same shear rates. The spectra and the dependence of their features as a 

function of shear rate are qualitatively similar to those presented in Figure 1 in the main text. 



 

Moreover, we would like to indicate that the identification of TEZ does not depend on the details 

of simulation. We are currently using a direct numerical simulation method (S15-S17), which takes 

into account hydrodynamic interactions and thermal fluctuations accurately, to repeat the 

simulation with under the same control parameters. Like the results of BD presented in this work, 

in this more rigorous computational study the TEZ is again identified and its evolution as a function 

of shear rate is identical to that of experiment. The qualitative feature of TEZ remains intact. Only 

quantitative difference is observed.                 

 

S4. Calculation of Stress Components 

In this section we give the equations for calculating the stress components for the charged colloids 

as well as the hard spheres. 

The Brownian contribution to the stress 𝜎(𝐵) for a hard-sphere suspension can be calculated if 

𝑔(𝒓) is known (S12, S18, S19): 

𝜎(𝐵) ≈ −𝑛2𝑘𝐵𝑇
𝑑

2
∬ 𝑟̂𝑟̂𝑔(𝑟)𝑑𝑆
𝑟=𝑑

                                         (S38) 

where 𝑛 is the number density of particles, 𝑑 is the diameter of the colloidal particle and 𝑟̂ is the 

unit vector along the passing through the two particle centers. For the shear geometry, the xy 

component is the shear stress: 

𝜎𝑥𝑦
(𝐵)

≈ −𝑛2𝑘𝐵𝑇
𝑑

2
∬ 𝑟̂𝑥𝑟̂𝑦𝑔(𝑟)𝑑𝑆𝑟=𝑑

           (S39) 

In practice, the following form has been suggested to calculate 𝜎(𝐵)  to account for the 

polydispersity of particles (S19): 

𝜎𝑥𝑦
(𝐵)

≈ −𝑛2𝑘𝐵𝑇
〈𝑑〉

2

𝐶

𝜀1+𝜀2
∫ 𝑑𝑟
〈𝑑〉+𝜀2

𝑟=〈𝑑〉−𝜀1
∬𝑟̂𝑥𝑟̂𝑦𝑔(𝑟)𝑑𝑆         (S40) 

where 〈𝑑〉 is the average diameter of particle, 𝜀1 and 𝜀2 indicate the integral range around 〈𝑑〉, and 

C is a dimensionless factor that accounts for the difference between the above two equations. Using 

the manner suggested in (S19), we set 𝑑 − 𝜀1 to be 0.79d and 𝑑 + 𝜀2 to be 1.15d. For the hard-

sphere suspension, C can be determined by the following two physical constraints: 

(i) The calculated 𝜎𝑥𝑦
(𝐵)

 should be smaller than 𝜎𝑡𝑜𝑡 − 𝜎𝑠𝑜𝑙, where  𝜎𝑡𝑜𝑡 is the total stress measured 

by rheometry and 𝜎𝑠𝑜𝑙 is the solvent contribution to the stress: 𝜎𝑠𝑜𝑙 = 𝜂𝑠𝑜𝑙𝛾̇.  

(ii) The hydrodynamic contribution to the viscosity, 𝜂𝐻𝑆
(𝐻)

 ( = 𝜂𝑡𝑜𝑡 − 𝜂𝐻𝑆
(𝐵)
− 𝜂𝑠𝑜𝑙 ), should 

monotonically increase as a function of 𝛾̇.  

The constraint (ii) can be justified as follows: 1) the total viscosity of the hard-sphere suspension 

is composed of the Brownian and hydrodynamic contributions (S12, S19), and 2) the 

hydrodynamic contribution to the viscosity monotonically increases with increasing the shear rate 

(S11). 

The range of C determined by the above two constraints is 9.1-12.2. Notice that, this value is 

different from the value used in another study (S19), which may be due to the differences on the 

particle size and solvent. We adopt the value of C = 9.1 here.   



The Brownian contribution to the stress for the charged colloids can be estimated by the following 

equation (S12): 

𝜎𝑥𝑦
(𝐵)

≈ −𝑛2𝑘𝐵𝑇
𝑑

2
𝐶 ∫ 𝑟̂𝑥𝑟̂𝑦𝑔(𝑟)𝑊(𝑟)𝑑𝑟           (S41) 

where 𝑊(𝑟) is a function that depends on the interparticle potential (S12, S18). It exhibits a sharp 

peak around the peak position of 𝑔(𝑟).  

We evaluate the Brownian stress of the charged colloidal suspension using both Eqs. (S40) and 

(S41). The results are of the same order. In any case, we can conclude that in the charged colloidal 

suspension, the Brownian contribution to the stress is much smaller than the contribution from the 

TEZ. This is consistent with the theoretical prediction that in charged colloids the potential 

contribution to the stress is much larger than the Brownian contribution to the stress (S12). 

Knowing 𝜎𝑥𝑦
(𝐵)

, we can calculate the Brownian contribution to the viscosity by 𝜂(𝐵) = 𝜎𝑥𝑦
(𝐵)
/𝛾̇.  

The hydrodynamic viscosity contribution for the hard spheres can be directly obtained by: 

𝜂𝐻𝑆
(𝐻)

= 𝜂𝐻𝑆 − 𝜂𝐻𝑆
(𝐵) − 𝜂𝑠𝑜𝑙            (S42) 

The hydrodynamic contribution to the stress for the charged colloids can be estimated by (S12): 

𝜎𝐶𝐶
(𝐻)

𝛾̇𝜂𝑠𝑜𝑙
= 2.5𝜙 + 2.5𝜙2 +

15

4𝜋
𝜙2 ∫ [𝑀(𝑟)(𝒓̂ ∙ 𝑬̂ ∙ 𝒓̂) (𝒓̂𝒓̂ −

𝑰

3
) + 𝐿(𝑟)  

(𝒓̂𝑬̂ ∙ 𝒓̂ + 𝒓̂𝒓̂: 𝑬̂ −
2

3
𝑰(𝒓̂ ∙ 𝑬̂ ∙ 𝒓̂) + 𝐾(𝑟)𝑬̂) 𝑔(𝒓)𝑑𝒓         (S43) 

where E is the bulk strain rate tensor, M(r), L(r) and K(r) are tabulated functions. The theoretical 

and computational studies (S12) have shown that the integral term in the above equation is not 

important in the charged colloids, since the electrostatic repulsion can substantially reduce the 

many-body contribution to hydrodynamic stress by suppressing the near-contact lubrication. 

Therefore, the above equation can be roughly simplified to (S12):  

𝜂𝐶𝐶
(𝐻)

𝜂𝑠𝑜𝑙
=

𝜎𝐶𝐶
(𝐻)

𝛾̇𝜂𝑠𝑜𝑙
≈ 2.5𝜙 + 2.5𝜙2           (S44) 

In this study, the 𝜂𝐶𝐶
(𝐻)

 is found to be even below 0.1 Pa.s. This value is well below the TEZ 

contribution at measured shear rates.   
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