Supplementary Material (SI)

Three-Dimensional Auxetic Properties in Group V-VI Binary Monolayer Crystals X₃M₂ (X=S, Se, M=N, P, As)

Yan Chen¹, Xiangbiao Liao⁴, Xiaoyang Shi⁴, Hang Xiao^{2,4,*}, Yilun Liu^{3,*} and Xi Chen^{2,4}

¹ International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China ² School of Chemical Engineering, Northwest University, Xi'an 710069, China

³ State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China

⁴Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA

* E-mail: (Y.L.) <u>yilunliu@mail.xjtu.edu.cn</u>; (H.X.) <u>hx2152@columbia.edu</u>

Out-of-Plane NPR of 2-D X₃M₂

Figure S1 Atomic model of (a) Se₃N₂ (b) Se₃P₂ (c) S₃As₂ and (d) Se₃As₂. The inset shows group V and VI elements considered in this study (colored). θ defines the orientation relative to *x* axis.

Figure S2 Energy band structures of X₃M₂ (X=S, Se; M=N, P, As). The inset in (a) shows the Brillouin zone and relevant high-symmetry k-points for all of the 2-D crystals X₃M₂.

Figure S3 Out-of-plane strain and its corresponding Poisson's ratio of Se_3N_2 under tension in *x* direction (a), (b) and *y* direction (c), (d).

Figure S4 Out-of-plane strain and its corresponding Poisson's ratio of S_3As_2 under tension in *x* direction (a), (b) and *y* direction (c), (d).

Figure S5 Out-of-plane strain and its corresponding Poisson's ratio of Se_3As_2 under tension in *x* direction (a), (b) and *y* direction (c), (d).

Figure S6 Out-of-plane strain and its corresponding Poisson's ratio of P_2Se_3 under tension in *x* direction (a), (b) and *y* direction (c), (d).

Figure S7 Bond length changes under tension (a) in y direction for S_3N_2 and (b) in x direction for S_3P_2 .

Cross-Plane NPR of 3-D Bulk Form X₃M₂

Figure S8 Atomic model of the most energetically favorable stacked (a) α -heart and (b) β -heart X₃M₂ bulk crystal.

	v_{xH*}	v_{yH}
Black phosphorus ¹	~ -0.5	~ 0.3
Bulk arsenene ²	/	-0.125
Bulk S ₃ N ₂	0.325	0.049
Bulk Se ₃ N ₂	0.943	0.041
Bulk S ₃ P ₂	0.411	-0.457
Bulk Se ₃ P ₂	0.192	-0.101
Bulk S ₃ As ₂	0.278	-0.025
Bulk Se As	0.152	-0.065

Table S1 Cross-plane interlayer Poisson's ratio for X₃M₂ bulk crystals (X=S, Se; M=N, P, As) and other bulk crystals reported before.

black phosphorene and arsenene, x and y represent armchair and zigzag directions, respectively.

a-heart X₃M₂ Bulk Crystals

Figure S9 Cross-plane interlayer strain and its corresponding Poisson's ratio of S₃N₂ bulk crystal under tension in x and y direction.

Figure S10 Cross-plane interlayer strain and its corresponding Poisson's ratio of Se_3N_2 bulk crystal under tension in x and y direction.

Figure S11 Cross-plane interlayer strain and its corresponding Poisson's ratio of S_3P_2 bulk crystal under tension in *x* and *y* direction.

Figure S12 Cross-plane interlayer strain and its corresponding Poisson's ratio of Se_3P_2 bulk crystal under tension in *x* and *y* direction.

Figure S13 Cross-plane interlayer strain and its corresponding Poisson's ratio of S_3As_2 bulk crystal under tension in *x* and *y* direction.

Figure S14 Cross-plane interlayer strain and its corresponding Poisson's ratio of Se_3As_2 bulk crystal under tension in *x* and *y* direction.

Figure S15. Orientation-dependent in-plane Young's modulus $E(\theta)$, Poisson's ratio $v(\theta)$ and negative Poisson's ratio of (a) N₂Se₃ (b) P₂Se₃ (c) As₂S₃ (d) Se₃As₂.

Formula	Young's Modulus				Possion's Ratio			
	Maximum		Minimum		Maximum		Minimum	
	E (GPa)	θ (°)	E (GPa)	θ (°)	υ	θ (°)	υ	θ (°)
S ₃ N ₂	82.26	45	26.38	90	0.7405	0	-0.0259	45
Se ₃ N ₂	84.92	18	32.59	90	0.4182	0	-0.0468	44
S ₃ P ₂	63.60	17	17.07	90	0.8229	0	0.0157	45
Se ₃ P ₂	56.67	23	9.74	90	1.1553	0	-0.1999	42
S ₃ As ₂	48.14	26	10.97	90	0.8229	0	-0.0836	44
Se ₃ As ₂	56.46	22	10.24	90	1.0799	0	-0.1857	42

Table S2 Extremes of the in-plane Young's modulus and Poisson's ratio for X_3M_2 (X=S, Se; M=N, P, As)

Equation S1

Variables defined with elastic constants C_{ij} for calculating orientation-dependent in-plane Young's modulus $E(\theta)$ and Poisson's ratio $v(\theta)$.

$$v_{ZZ} = \frac{c_{12}}{c_{22}}$$

$$d_1 = \frac{c_{11}}{c_{22}} + 1 - \frac{c_{11}c_{22} - c_{12}^2}{c_{22}c_{66}}$$

$$d_2 = -(2\frac{c_{12}}{c_{22}} - \frac{c_{11}c_{22} - c_{12}^2}{c_{22}c_{66}})$$

$$d_3 = \frac{c_{11}}{c_{22}}$$

$$Y_{ZZ} = \frac{c_{11}c_{22} - c_{12}^2}{c_{22}}$$

Reference

- 1. Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu and P. D. Ye, *Nano Letters*, 2016, 16, 6701-6708.
- 2. J. Han, J. Xie, Z. Zhang, D. Yang, M. Si and D. Xue, *Applied Physics Express*, 2015, **8**, 041801.