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THE PYCHEMIA-MAISE INTERFACE

PyChemia and MAISE interact together for the purpose of the structural search. The roles of PyChemia are
basically three: (i) generate structures for evaluation, (ii) coordinate the execution of MAISE and (iii) use global search
algorithms that produce new structures based on the geometries and energies returned by MAISE. The inventory of
structures that has been evaluated on successive generations is also a role taken by PyChemia[1] by using a central
MongoDB database[2]. While the role of MAISE is to use the trained neural network that then is used to locally
optimize the geometry of a given structure as well as determine the related energy (enthalpy), atomic forces and the
stress tensor of the cell. The search is only performed in the primitive cell. Therefore, at each iteration, symmetry
analysis is performed in the different candidates and only the primitive cells are considered for the next iteration.

For the creation of new structures, we have used two different methods, the first consists of a random structure
generated by selecting different random lattice parameters, random angles and random atomic positions for a given
composition. Cell parameters are chosen such that no acute angles are allowed. The second method consists in
creating a smaller structural database by selecting a crystal structure from OQMD database[3, 4] which, by the time
of this work, contains more than 297 thousand of structures for the stoichiometries of interest. For such purpose,
before the structural search is launched the smaller database is built with the following criterion: (i) the considered
structure from the database has the same number of chemical elements that the object of study (two in this case)
and (ii) the total number of atoms is an integer multiple of the given stoichiometry. With this database we guarantee
that we also consider very symmetric structures within the search, if they correspond to low energy configuration is
dictated by the method used to evaluate forces and stresses. At each iteration, the population is analyzed and the
lower energy structures are passed to the next iteration. High energy structures are replaced by new ones with 70%
probability from the database and the remained 30% are randomly generated.

STATISTICS ON FOUND STRUCTURES

In Fig. S4, we show the percentage of structures for a given crystal family obtained by the two methods. For the
MHM-DFT case, we have considered a total 847 structures where almost 57% belong to the triclinic crystal system.
The fact that there is a large number of low symmetry structures can be due to the tendency of the material to
disorder easily (see our discussion on SQS phases), which seems to be captured by this search method. Another
reason for such number of low symmetry structures could be due to the used geometrical tolerance factors, which were
selected quite strict to define the crystal symmetry (the tolerance in deviations from the specific crystal configuration
was 0.001). As the search try to look for new phases, Mg-Ca prefers to have only few high symmetric ones and the
search method can only create structures which are more energetic and less symmetric to keep the balance between
exploration and structure diversity. We have changed the deviation tolerance to determine the space group to 0.01,
and the only change that we observe was that some structures from triclinic phase have monoclinic phase. In general,
high symmetry structures (those with space group higher than 142) were less than 1%. Nevertheless, this methodology
found that the structure with the lowest formation energy has concentration of x=1/3 (Mg2Ca) which is the right
ground state concentration found experimentally. However, we cannot say that we have found the ground state since
the C14 Laves phase contains 12 atoms per cell. In our case, we have found that the low energy structure corresponds
to the C15 Laves phase, which contains only 6 atoms per cell, this result is consistent for both methodologies.

On the other hand, for the FF-NN methodology we have found up to 3292 different structures. From them,
49% of those are triclinic, a percentage that is close to the one found with the MHM-DFT methodology (58%).
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Additionally, high symmetry structures (space group higher than 142) represent only 1.4% of the total structures
under this methodology, a value also similar to one obtained from the MHM-DFT method.
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oS36-Mg7Ca2 cF16-Mg3Ca B2-MgCa hP8-MgCa3

Raman

response

1.76, 1.82, 2.96, 3.19, 3.36

3.47, 3.62, 3.63, 3.67, 3.98

4.23, 4.27, 4.42, 4.46, 4.46

4.69, 5.00, 5.11, 5.29, 5.57

5.99, 6.03, 6.56, 6.83, 6.86

7.08, 8.78

4.74 —— 2.37, 2.68, 3.54, 4.30, 5.40

IR

response

2.26, 3.44, 3.48, 3.57, 3.97

4.07, 4.17, 4.17, 4.23, 4.67

4.78, 4.83, 4.99, 5.37, 5.92

6.17, 6.82, 6.85, 8.78

4.98, 6.76 5.93 4.27, 4.55, 4.74
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FIG. S1: (a-c) Energy versus shortest interatomic distance for select Mg, Ca, and Mg-Ca structures evaluated with the
developed NN model (red lines) and the DFT (black circles). The data sets were generated by rescaling the structures’ volume
and included in the NN training to ensure the correct description of configurations with short distances. As in our previous
study[5], NN models trained without such data showed similarly good accuracy. (d) Energy versus c/a ratio in the volume-
constrained hcp-Mg and hcp-Ca structures. The data illustrates the NN performance for structures subjected to anisotropic
deformations.
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FIG. S2: Vacancy and substitution formation energies calculated at the DFT and NN levels. The settings are discussed in
our previous study.[5] From left to right, the data points correspond to the bcc, fcc, hcp, and sc structures.
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FIG. S3: Phonon dispersion curves for the ground state structures of (a) magnesium, (b) C14-Mg2Ca and (c) Calcium, obtained
at DFT (black) and NN (red) level.
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FIG. S4: Histogram of the percent of structures corresponding to each crystal system. For the case of MHM-VASP with crystal
systems trigonal, hexagonal and cubic the percentage is 0, 0.24 and 0.35, respectively.
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FIG. S5: k-point convergence tests for the Mg2Ca Laves phases. In order to show the energy sensitivity to the choice of
the unit cell shape, C15 was modeled with the conventional (24 atoms), primitive (6 atoms), and hexagonal (36 atoms) unit
cells representing the same structure. The hexagonal unit cells for C14 (12 atoms), C36 (24 atoms), and C15 (36 atoms) had
Γ-centered meshes specified in the figure for C14 with scaled down c-axis grid by a factor 2 for C36 and a factor of 3 for C15.
The non-hexagonal unit cells were sampled with the Monkhorst-Pack sampling [6] with comparable densities; for example, the
finest grids for the conventional and primitive unit cells of C15 were 12×12×12 and 16×16×16, respectively. The tetrahedron
integration scheme was used in all the cases.
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FIG. S6: SQS structure with 207 atoms in the cell. The motif used for this structure was oS36-Mg7Ca2. Orange and blue
balls represent Mg and Ca atoms, respectively.
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FIG. S7: Partial electronic density of states (a) oS36-Mg7Ca2, (b) mS18-Mg7Ca2, (c) cF16-Mg3Ca, (d) B2-MgCa and (e)
hP8-MgCa3.
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FIG. S8: Projected phonon density of states for (a) oS36-Mg7Ca2, (b) mS18-Mg7Ca2, (c) cF16-Mg3Ca, (d) B2-MgCa and
(e) hP8-MgCa3. The forces to extract the dynamical matrix were calculated with NN-model. Dashed lines from hP8-MgCa3

corresponds to values at zero pressure.
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