# Actinide embedded nearly planner gold superatom: structural properties and applications in surfaceenhanced Raman scattering (SERS)

Jianpeng Wang,<sup>a,b</sup> Weiyu Xie,<sup>a,b</sup> Jia Wang,<sup>a,b</sup> Yang Gao,<sup>a,b</sup> Jiehong Lei,<sup>\*c</sup> Rui-

Qin Zhang \*d,e and Zhigang Wang\*a,b

a. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.

b. Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun 130012, China.

c. Physics and Space Science College, China West Normal University, Nanchong 637009, China

d. Department of Physics, City University of Hong Kong, Hong Kong SAR, P.R. China

e. Beijing Computational Science Research Center, Beijing 100193, China

Part 1: Coordinates of the optimized structures.

Part 2: Calculated relative energies for An@Au<sub>6</sub> (An = Ac<sup>-</sup>, Th, Pa<sup>+</sup>).

- Part 3: Calculated geometry information of An@Au<sub>6</sub>.
- Part 4: Charge analysis for An@Au<sub>6</sub>.
- Part 5: The vibrational modes and the vibrational spectra for An@Au<sub>6</sub>.
- Part 6: Energy decomposition analysis for An@Au<sub>6</sub>.
- Part 7: UV-visible absorption spectra.

# Part 1: Coordinates of the optimized structures.

Table S1. Coordinates of An@Au<sub>6</sub> (An = Ac<sup>-1</sup>, Th, Pa<sup>+1</sup>) and their corresponding adsorption complexes.

| Structure                                    | Number | Atom | x (Å)     | y (Å)     | z (Å)     |
|----------------------------------------------|--------|------|-----------|-----------|-----------|
| [Ac@Au <sub>6</sub> ] <sup>-</sup>           | 1      | Ac   | -0.000001 | 0.000003  | 1.162790  |
|                                              | 2      | Au   | 0.000021  | 2.805040  | 0.101657  |
|                                              | 3      | Au   | 2.429440  | 1.402610  | 0.102270  |
|                                              | 4      | Au   | 2.429360  | -1.402540 | 0.101955  |
|                                              | 5      | Au   | -0.000029 | -2.805070 | 0.101692  |
|                                              | 6      | Au   | -2.429410 | -1.402590 | 0.102223  |
|                                              | 7      | Au   | -2.429380 | 1.402550  | 0.102001  |
| Structure                                    | Number | Atom | x (Å)     | y (Å)     | z (Å)     |
| Th@Au <sub>6</sub>                           | 1      | Th   | 0.000000  | 0.000003  | 0.687325  |
|                                              | 2      | Au   | -0.000011 | 2.780150  | -0.000116 |
|                                              | 3      | Au   | 2.407600  | 1.390030  | -0.000530 |
|                                              | 4      | Au   | 2.407670  | -1.390100 | -0.000072 |
|                                              | 5      | Au   | 0.000008  | -2.780140 | -0.000167 |
|                                              | 6      | Au   | -2.407600 | -1.390030 | -0.000524 |
|                                              | 7      | Au   | -2.407670 | 1.390080  | -0.000122 |
| Structure                                    | Number | Atom | x (Å)     | y (Å)     | z (Å)     |
| [Pa@Au <sub>6</sub> ]+                       | 1      | Pa   | 0.000011  | -0.000002 | 0.002544  |
|                                              | 2      | Au   | 0.000055  | 2.765890  | -0.000395 |
|                                              | 3      | Au   | -2.400990 | 1.385140  | -0.000439 |
|                                              | 4      | Au   | -2.400970 | -1.385110 | -0.000420 |
|                                              | 5      | Au   | 2.400940  | 1.385060  | -0.000454 |
|                                              | 6      | Au   | 2.400880  | -1.385020 | -0.000409 |
|                                              | 7      | Au   | 0.000062  | -2.765960 | -0.000428 |
| Structure                                    | Number | Atom | x (Å)     | y (Å)     | z (Å)     |
| [Ac@Au <sub>6</sub> ] <sup>-</sup> +Pyridine | 1      | Au   | 1.118850  | 2.634870  | -0.357089 |
|                                              | 2      | Au   | 2.752690  | 0.328769  | -0.367115 |
|                                              | 3      | Au   | 1.607140  | -2.247430 | -0.369267 |

|                              | 4                                                                       | Au                                                                                  | -1.681140                                                                                                                                                                                   | 2.334290                                                                                                                                                                                           | -0.530085                                                                                                                                                                              |
|------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | 5                                                                       | Au                                                                                  | -1.197730                                                                                                                                                                                   | -2.545680                                                                                                                                                                                          | -0.453127                                                                                                                                                                              |
|                              | 6                                                                       | Au                                                                                  | -2.824770                                                                                                                                                                                   | -0.240494                                                                                                                                                                                          | -0.613826                                                                                                                                                                              |
|                              | 7                                                                       | Ac                                                                                  | -0.084212                                                                                                                                                                                   | 0.046006                                                                                                                                                                                           | 0.598093                                                                                                                                                                               |
|                              | 8                                                                       | С                                                                                   | -0.078404                                                                                                                                                                                   | 1.203100                                                                                                                                                                                           | 4.051200                                                                                                                                                                               |
|                              | 9                                                                       | С                                                                                   | -0.130734                                                                                                                                                                                   | 1.252480                                                                                                                                                                                           | 5.444910                                                                                                                                                                               |
|                              | 10                                                                      | С                                                                                   | -0.386365                                                                                                                                                                                   | -1.093250                                                                                                                                                                                          | 4.045790                                                                                                                                                                               |
|                              | 11                                                                      | С                                                                                   | -0.451570                                                                                                                                                                                   | -1.133880                                                                                                                                                                                          | 5.438960                                                                                                                                                                               |
|                              | 12                                                                      | С                                                                                   | -0.320967                                                                                                                                                                                   | 0.061601                                                                                                                                                                                           | 6.149880                                                                                                                                                                               |
|                              | 13                                                                      | Ν                                                                                   | -0.203319                                                                                                                                                                                   | 0.052795                                                                                                                                                                                           | 3.360910                                                                                                                                                                               |
|                              | 14                                                                      | Н                                                                                   | -0.601338                                                                                                                                                                                   | -2.085730                                                                                                                                                                                          | 5.948500                                                                                                                                                                               |
|                              | 15                                                                      | н                                                                                   | 0.069028                                                                                                                                                                                    | 2.109130                                                                                                                                                                                           | 3.458020                                                                                                                                                                               |
|                              | 16                                                                      | н                                                                                   | -0.023871                                                                                                                                                                                   | 2.208120                                                                                                                                                                                           | 5.958100                                                                                                                                                                               |
|                              | 17                                                                      | Н                                                                                   | -0.483007                                                                                                                                                                                   | -2.002390                                                                                                                                                                                          | 3.447020                                                                                                                                                                               |
|                              | 18                                                                      | Н                                                                                   | -0.366250                                                                                                                                                                                   | 0.066063                                                                                                                                                                                           | 7.240190                                                                                                                                                                               |
| Structure                    | Number                                                                  | Atom                                                                                | v (Å)                                                                                                                                                                                       | ν (Å)                                                                                                                                                                                              | <del>ح</del> (Å)                                                                                                                                                                       |
| Structure                    | Number                                                                  | Atom                                                                                | × (ハ)                                                                                                                                                                                       | y (~)                                                                                                                                                                                              | 2 (A)                                                                                                                                                                                  |
| Th@Au <sub>6</sub> +Pyridine | 1                                                                       | Au                                                                                  | 1.106180                                                                                                                                                                                    | 2.606990                                                                                                                                                                                           | -0.284348                                                                                                                                                                              |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2                                                                  | Au<br>Au<br>Au                                                                      | 1.106180<br>2.732110                                                                                                                                                                        | 2.606990<br>0.327410                                                                                                                                                                               | -0.284348<br>-0.267760                                                                                                                                                                 |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3                                                             | Au<br>Au<br>Au<br>Au                                                                | 1.106180<br>2.732110<br>1.591270                                                                                                                                                            | 2.606990<br>0.327410<br>-2.227100                                                                                                                                                                  | -0.284348<br>-0.267760<br>-0.284178                                                                                                                                                    |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4                                                        | Au<br>Au<br>Au<br>Au<br>Au                                                          | 1.106180<br>2.732110<br>1.591270<br>-1.673730                                                                                                                                               | 2.606990<br>0.327410<br>-2.227100<br>2.315470                                                                                                                                                      | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455                                                                                                                                       |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5                                                   | Au<br>Au<br>Au<br>Au<br>Au<br>Au                                                    | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960                                                                                                                                  | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200                                                                                                                                         | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012                                                                                                                          |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6                                              | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au                                              | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740                                                                                                                     | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383                                                                                                                            | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181                                                                                                             |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6<br>7                                         | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Th                                        | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306                                                                                                        | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411                                                                                                                | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450                                                                                                 |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                    | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Th<br>C                                   | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306<br>-0.071101                                                                                           | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411<br>1.211290                                                                                                    | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450<br>3.539240                                                                                     |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                               | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Th<br>C<br>C                              | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306<br>-0.071101<br>-0.126484                                                                              | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411<br>1.211290<br>1.253640                                                                                        | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450<br>3.539240<br>4.928800                                                                         |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                         | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Th<br>C<br>C<br>C                         | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306<br>-0.071101<br>-0.126484<br>-0.351619                                                                 | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411<br>1.211290<br>1.253640<br>-1.106320                                                                           | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450<br>3.539240<br>4.928800<br>3.532840                                                             |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                   | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Th<br>C<br>C<br>C<br>C                    | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306<br>-0.071101<br>-0.126484<br>-0.351619<br>-0.416898                                                    | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411<br>1.211290<br>1.253640<br>-1.106320<br>-1.141960                                                              | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450<br>3.539240<br>4.928800<br>3.532840<br>4.922350                                                 |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12             | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Th<br>C<br>C<br>C<br>C                    | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306<br>-0.071101<br>-0.126484<br>-0.351619<br>-0.416898<br>-0.302725                                       | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411<br>1.211290<br>1.253640<br>-1.106320<br>-1.141960<br>0.057621                                                  | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450<br>3.539240<br>4.928800<br>3.532840<br>4.922350<br>5.630590                                     |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13       | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Th<br>C<br>C<br>C<br>C<br>C<br>N          | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306<br>-0.071101<br>-0.126484<br>-0.351619<br>-0.416898<br>-0.302725<br>-0.181978                          | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411<br>1.211290<br>1.253640<br>-1.106320<br>-1.141960<br>0.057621<br>0.050649                                      | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450<br>3.539240<br>4.928800<br>3.532840<br>4.922350<br>5.630590<br>2.853750                         |
| Th@Au <sub>6</sub> +Pyridine | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>C<br>C<br>C<br>C<br>C<br>C<br>N<br>H      | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306<br>-0.071101<br>-0.126484<br>-0.351619<br>-0.416898<br>-0.302725<br>-0.181978<br>-0.554937             | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411<br>1.211290<br>1.253640<br>-1.106320<br>-1.141960<br>0.057621<br>0.050649<br>-2.094230                         | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450<br>3.539240<br>4.928800<br>3.532840<br>4.922350<br>5.630590<br>2.853750<br>5.432780             |
| Th@Au <sub>6</sub> +Pyridine | 1   2   3   4   5   6   7   8   9   10   11   12   13   14   15         | Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>Au<br>C<br>C<br>C<br>C<br>C<br>C<br>N<br>H<br>H | 1.106180<br>2.732110<br>1.591270<br>-1.673730<br>-1.191960<br>-2.811740<br>-0.071306<br>-0.071101<br>-0.126484<br>-0.351619<br>-0.416898<br>-0.302725<br>-0.181978<br>-0.554937<br>0.065859 | 2.606990<br>0.327410<br>-2.227100<br>2.315470<br>-2.518200<br>-0.238383<br>0.045411<br>1.211290<br>1.253640<br>-1.106320<br>-1.141960<br>0.057621<br>0.057621<br>0.050649<br>-2.094230<br>2.114630 | -0.284348<br>-0.267760<br>-0.284178<br>-0.439455<br>-0.374012<br>-0.516181<br>0.321450<br>3.539240<br>4.928800<br>3.532840<br>4.922350<br>5.630590<br>2.853750<br>5.432780<br>2.939070 |

|                                 | 17     | Н    | -0.436397 | -2.013170 | 2.928300  |
|---------------------------------|--------|------|-----------|-----------|-----------|
|                                 | 18     | Н    | -0.350633 | 0.060654  | 6.720510  |
| Structure                       | Number | Atom | x (Å)     | y (Å)     | z (Å)     |
| [Pa@Au <sub>6</sub> ]++Pyridine | 1      | Au   | 1.089920  | 2.564900  | -0.289647 |
|                                 | 2      | Au   | 2.700650  | 0.324244  | -0.153565 |
|                                 | 3      | Au   | 1.570300  | -2.198080 | -0.219278 |
|                                 | 4      | Au   | -1.657890 | 2.286600  | -0.373395 |
|                                 | 5      | Au   | -1.174930 | -2.476160 | -0.379239 |
|                                 | 6      | Au   | -2.790400 | -0.234649 | -0.396285 |
|                                 | 7      | Ра   | -0.062690 | 0.044914  | 0.132049  |
|                                 | 8      | С    | -0.071437 | 1.219680  | 3.210270  |
|                                 | 9      | С    | -0.128886 | 1.257270  | 4.597220  |
|                                 | 10     | С    | -0.328900 | -1.115230 | 3.205370  |
|                                 | 11     | С    | -0.393765 | -1.145680 | 4.592570  |
|                                 | 12     | С    | -0.292398 | 0.057509  | 5.298890  |
|                                 | 13     | Ν    | -0.170169 | 0.049995  | 2.525490  |
|                                 | 14     | Н    | -0.521633 | -2.098650 | 5.104190  |
|                                 | 15     | Н    | 0.056657  | 2.124320  | 2.610770  |
|                                 | 16     | Н    | -0.046283 | 2.212810  | 5.113260  |
|                                 | 17     | Н    | -0.404461 | -2.023740 | 2.602760  |
|                                 | 18     | Н    | -0.339816 | 0.062664  | 6.388400  |

### Part 2. Calculated relative energies for $An@Au_6$ (An = Ac<sup>-</sup>, Th, Pa<sup>+</sup>).

Table S2. Relative bonding energies for  $An@Au_6$  calculated based on different functionals and basis sets.

| System                 | Functional /Basis set | Multiplicity        | $\Delta E (eV)$ |
|------------------------|-----------------------|---------------------|-----------------|
|                        |                       | 1(C <sub>6v</sub> ) | 0               |
|                        | BP86/TZP              | 3(C <sub>6v</sub> ) | 1.54            |
| [Ac@Au <sub>6</sub> ]- |                       | 5(C <sub>3v</sub> ) | 2.7             |
|                        |                       | 1(C <sub>6v</sub> ) | 0               |
|                        | PBE/TZP               | 3(C <sub>6v</sub> ) | 1.56            |
|                        |                       | 5(C <sub>3v</sub> ) | 2.68            |
|                        |                       | 1(C <sub>6v</sub> ) | 0               |
| Th@Au₀                 | BP86/TZP              | 3(C <sub>6v</sub> ) | 1.59            |
|                        |                       | 5(C <sub>3v</sub> ) | 2.97            |
|                        |                       | 1(C <sub>6v</sub> ) | 0               |
|                        | PBE/TZP               | 3(C <sub>6v</sub> ) | 1.61            |
|                        |                       | 5(C <sub>3v</sub> ) | 2.95            |
|                        |                       | 1(D <sub>6h</sub> ) | 0               |
|                        | BP86/TZP              | 3(C <sub>6v</sub> ) | 0.18            |
|                        |                       | 5(C <sub>3v</sub> ) | 1.18            |
| [                      |                       | 1(D <sub>6h</sub> ) | 0               |
|                        | PBE/TZP               | 3(C <sub>6v</sub> ) | 0.22            |
|                        |                       | 5(C <sub>3v</sub> ) | 1.38            |

#### Part 3. Calculated geometry information of An@Au<sub>6</sub>.

Table S3. Symmetry, gold-gold bond (nm), metal-gold bond (nm), gold-metal-gold angle (, HOMO-LUMO gap (eV), bond energy (eV) of  $[Ac@Au_6]^-$ , Th@Au\_6 and  $[Pa@Au_6]^+$ , respectively.

|                                     | $[Ac@Au_6]^-$     | Th@Au <sub>6</sub>  | $[Pa@Au_6]^+$     |
|-------------------------------------|-------------------|---------------------|-------------------|
| Symmetry                            | $C_{6v}$          | C <sub>6v</sub>     | D <sub>6h</sub>   |
| Au-Au (Å)                           | 2.81 (2.79)       | 2.78 (2.77)         | 2.77 (2.76)       |
| An-Au (Å)                           | 3.00 (3.01)       | 2.86 (2.87)         | 2.77 (2.76)       |
| Au-An-Au angle ( )                  | 138.8 (136.5)     | 152.1 (151.5)       | 180.0 (180.0)     |
| HOMO-LUMO Gap (eV)                  | 1.98 (1.91)       | 1.80 (1.70)         | 0.15 (0.0)        |
| Bond Energy (eV)                    | -21.36 (-48.41)   | -21.00 (-49.15)     | -13.91 (-42.69)   |
| The data in parenthesis were obtain | ed with SOC (spin | n-orbit coupling) e | effects included. |

# Part 4. Charge analysis for An@Au<sub>6</sub>.

| Atom | Hirshfeld (e) | VDD (e) |
|------|---------------|---------|
| Th   | 0.4066        | 0.538   |
| Au   | -0.0678       | -0.09   |
| Ac   | 0.3168        | 0.458   |
| Au   | -0.2195       | -0.243  |
| Ра   | 0.5943        | 0.684   |
| Au   | 0.0676        | 0.053   |

Table S4. Hirshfeld Charge Analysis and VDD analysis.

#### Part 5. The vibrational modes and the vibrational spectra for An clusters

To facilitate future experimental characterizations, we also computed the vibrational spectra of An@Au<sub>6</sub> (An = Ac<sup>-</sup>, Th, Pa<sup>+</sup>). The results show that breathing vibration mode at 120 cm<sup>-1</sup>, 131 cm<sup>-1</sup> and 132 cm<sup>-1</sup> for [Ac@Au<sub>6</sub>]<sup>-</sup>, Th@Au<sub>6</sub> and [Pa@Au<sub>6</sub>]<sup>+</sup> are Raman-active but IR-inactive. But actinide translation vibration mode at 133 cm<sup>-1</sup>,157 cm<sup>-1</sup> and 176 cm<sup>-1</sup> for [Ac@Au<sub>6</sub>]<sup>+</sup>, Th@Au<sub>6</sub> and [Pa@Au<sub>6</sub>]<sup>+</sup> are IR-active but Raman-inactive.

Figure 1. IR and Raman vibration modes of  $An@Au_6$  (An = Ac<sup>-</sup>, Th, Pa<sup>+</sup>) clusters.



### Part 6. Energy decomposition analysis for An@Au<sub>6</sub>.

| Bond energy decomposition (eV) |                                             |                             |                                              |  |  |  |
|--------------------------------|---------------------------------------------|-----------------------------|----------------------------------------------|--|--|--|
|                                | [Ac@Au <sub>6</sub> ] <sup>-</sup> (Case 6) | Th@Au <sub>6</sub> (Case 2) | [Pa@Au <sub>6</sub> ] <sup>+</sup> (Case 10) |  |  |  |
| $\Delta E_{int}$               | -11.7045                                    | -10.8909                    | -3.4128                                      |  |  |  |
| $\triangle E_{pauli}$          | 32.7356                                     | 53.5959                     | 48.5546                                      |  |  |  |
| $\triangle E_{orb}$            | -20.0051                                    | -33.4525                    | -16.7198                                     |  |  |  |
|                                | 45.02%                                      | 51.87%                      | 32.17%                                       |  |  |  |
| $\triangle E_{elestat}$        | -24.4349                                    | -31.0343                    | -35.2476                                     |  |  |  |
|                                | 54.98%                                      | 48.13%                      | 67.83%                                       |  |  |  |
|                                | Ac@Au <sub>6</sub> (Case 7)                 | Th@Au6 (Case 2)             | Pa@Au <sub>6</sub> (Case 11)                 |  |  |  |
| $\Delta E_{int}$               | -8.3811                                     | -10.8909                    | -10.109                                      |  |  |  |
| $\triangle E_{\text{pauli}}$   | 32.7356                                     | 53.5959                     | 48.5546                                      |  |  |  |
| $\triangle E_{orb}$            | -16.6818                                    | -33.4525                    | -23.416                                      |  |  |  |
|                                | 40.57%                                      | 51.87%                      | 39.92%                                       |  |  |  |
| $\triangle E_{elestat}$        | -24.4349                                    | -31.0343                    | -35.2476                                     |  |  |  |
|                                | 59.43%                                      | 48.13%                      | 60.08%                                       |  |  |  |

Table S5. Bond energy decomposition (eV).

Table S6. The various cases for fragment electron configurations assumed for EDA.

#Default closed shell singlet state for each fragment. Au6\* is the ground state for Au6 ring.

|        | ∆E in eV                              | $\Delta E_{int}$ | $\Delta E_{Pauli}$ | $\triangle E_{ele}$ | △E <sub>orb</sub> (percentage of total attractive) |
|--------|---------------------------------------|------------------|--------------------|---------------------|----------------------------------------------------|
| Case 1 | #                                     | -12.09           | 59.01              | -29.99              | -41.11 (57.82%)                                    |
| Case 2 | Th↑↑+Au <sub>6</sub> *                | -10.89           | 53.6               | -31.03              | -33.45 (51.87%)                                    |
| Case 3 | Th↑↑↑+Au <sub>6</sub> ↓↓↓↓            | -14.56           | 28.26              | -25.02              | -17.8 (41.56%)                                     |
| Case 4 | Th↑↑+Au <sub>6</sub> ↓↓↓↓             | -12.95           | 41.41              | -30.72              | -23.64 (43.49%)                                    |
| Case 5 | <b>[#]</b> <sup>-1</sup>              | -11.81           | 44.36              | -24.43              | -31.74 (56.50%)                                    |
| Case 6 | [Ac↑+Au <sub>6</sub> *] <sup>-1</sup> | -11.7            | 32.74              | -24.43              | -20.01 (45.02%)                                    |
| Case 7 | [Ac↑+Au₅ <sup>*</sup> ]               | -8.38            | 32.74              | -24.43              | -16.68 (40.57%)                                    |
| Case 8 | Ac↑↑↑+Au <sub>6</sub> ↓↓↓↓            | -16.38           | 28.29              | -28.5               | -16.17 (36.21%)                                    |

| Case 9     | <b>[#]</b> <sup>+1</sup>                     | -5.23  | 49.36 | -32.69 | -21.89 40.11% () |
|------------|----------------------------------------------|--------|-------|--------|------------------|
| Case<br>10 | [Pa7s↑↓6d↑5f↑↑+Au <sub>6</sub> *]+1          | -3.41  | 48.55 | -35.25 | -16.72 (32.17%)  |
| Case<br>11 | [Pa7s↑↓6d↑5f↑↑+Au₅*]                         | -10.11 | 48.55 | -35.25 | -23.42 39.92% () |
| Case 12    | [Pa6d↑↑↑+Au <sub>6</sub> ↓↓↓↓] <sup>+1</sup> | -15.8  | 29.17 | -20.04 | -24.93 (55.45%)  |
| Case 13    | [Pa6d↑↑↑+Au₅ <sup>*</sup> ]+¹                | -13.74 | 27.62 | -20.6  | -20.76 (50.18%)  |
| Case 14    | [Pa7s↑↓5f↑↓+Au <sub>6</sub> *]+1             | -9.81  | 40.87 | -26.3  | -24.37 (48.09%)  |

Total interaction can be decomposed as:

 $^{\triangle}\mathsf{E}_{int} = ^{\triangle}\mathsf{E}_{elestat} + ^{\triangle}\mathsf{E}_{Pauli} + ^{\triangle}\mathsf{E}_{orbital}$ 

where  $\triangle E_{elestat}$  is the electrostatic interaction term;  $\triangle E_{Pauli}$  is the Pauli repulsion term;  $\triangle E_{orbital}$  is the orbitals interaction term. Within this energy decomposition scheme the attractive and repulsive terms are negative and positive, respectively.

#### Part 7. UV-visible absorption spectra.

The absorption spectrum can be an effective identification method to test the validity of the specific superatom, especially in the low-energy range The allowed transitions involve mainly the SAMOs.<sup>1-3</sup> The first peak near 435 nm originates from 1P to 1D transition. The next peak near 462 nm arises from the 1D to 1F transition. And the weak peak around 518 nm arises from 1D to (1F, 5f) transition. The last peak around 571 nm arises from 1D to 1D transition. The next peak around 412 nm originates from 1P to orbital dominated by 7s of Ac. Strong peak near 465 nm arises from 1D to 1F transition and the last one at 498 arises from 1D to 1D transition. Inclusion of SOC effects causes all peaks shifting to red.

Table S7. Calculated wavelength ( $\lambda$  in nm), oscillator strength, and weights of Th@Au<sub>6</sub> and [Ac@Au<sub>6</sub>]<sup>-</sup> clusters at BP86/TZP including scalar relativistic effects.

|                                    | state           | λ   | f      | transit                                                       | ion                               | weight |
|------------------------------------|-----------------|-----|--------|---------------------------------------------------------------|-----------------------------------|--------|
|                                    | 5E1             | 435 | 0.0134 | 1P <sub>x</sub> 1P <sub>y</sub>                               | 1Dz <sup>2</sup>                  | 0.9230 |
|                                    | 4E1             | 462 | 0.0700 | $1D_{xy} \ 1D_{x^2-y^2}$                                      | 1F <sub>x</sub>                   | 0.4602 |
|                                    |                 |     |        | 1D <sub>xy</sub> 1D <sub>x</sub> <sup>2</sup> -y <sup>2</sup> | 1Fy                               | 0.3417 |
| Th@Au <sub>6</sub>                 | 1A <sub>1</sub> | 516 | 0.0022 | $1D_{xy} \ 1D_{x^2-y^2}$                                      | 5f [Th 91.37%]                    | 0.9947 |
|                                    | 3E1             | 523 | 0.0013 | $1D_{xy} \ 1D_{x^2-y^2}$                                      | 1F <sub>y</sub>                   | 0.4982 |
|                                    |                 |     |        | 1D <sub>xy</sub> 1D <sub>x</sub> <sup>2</sup> -y <sup>2</sup> | 1F <sub>x</sub>                   | 0.4659 |
|                                    | 1E1             | 571 | 0.0147 | $1D_{xy} \ 1D_{x^2-y^2}$                                      | 1D <sub>xz</sub> 1D <sub>yz</sub> | 0.9651 |
|                                    | 1A1             | 357 | 0.0200 | 1P <sub>x</sub> 1P <sub>y</sub>                               | 1D <sub>xz</sub> 1D <sub>yz</sub> | 0.9244 |
|                                    | 4E1             | 383 | 0.0048 | 1P <sub>x</sub> 1P <sub>y</sub>                               | 1Dz <sup>2</sup>                  | 0.9773 |
| [Ac@Au <sub>6</sub> ] <sup>-</sup> | 3E1             | 412 | 0.0609 | 1P <sub>x</sub> 1P <sub>y</sub>                               | 7s [Ac 79.60%]                    | 0.9237 |
|                                    | 2E1             | 465 | 0.1930 | 1D <sub>xy</sub> 1D <sub>x</sub> <sup>2</sup> -y <sup>2</sup> | 1Fy                               | 0.8547 |
|                                    | 1E1             | 498 | 0.0226 | 1D <sub>xy</sub> 1D <sub>x</sub> <sup>2</sup> -y <sup>2</sup> | 1D <sub>xz</sub> 1D <sub>yz</sub> | 0.9663 |

Note: Th@Au<sub>6</sub>: P<sub>x</sub> [Au 6s 46.28%, 5d 42.76%; Th 7p 4.47%]; P<sub>y</sub> [Au 6s 46.28%, 5d 42.76%; Th 7p 4.47%]; D<sub>xy</sub> [Au 7s 49.39%, 5d 21.30%, 6p 13.61%; Th 6d 13.63%]; D<sub>x<sup>2</sup>-y<sup>2</sup></sub> [Au 7s 49.39%, 5d 21.30%, 6p 13.61%; Th 6d 13.63%]; D<sub>z<sup>2</sup></sub> [Th 6d 63.99%, 7s 19.59%, 5f 5.52%; Au 5d 4.68%]; F<sub>x</sub>[Th 5f 79.60%; Au 6p 14.80%, 5d 4.82%]; F<sub>y</sub>[Au 6s 45.00%, 5d 13.87%; Th 5f 41.45%]; [Ac@Au<sub>6</sub>]: P<sub>x</sub> [Au 5d 51.09%, 6s 40.87%; Ac 7p 1.79%]; P<sub>y</sub> [Au 5d 51.09%, 6s 40.87%; Ac 7p 1.79%]; D<sub>xy</sub> [Au 6s 58.13%, 6p 12.86%, 5d 16.39%; Ac 6d 11.27%]; D<sub>x<sup>2</sup>y<sup>2</sup></sub> [Au 6s 58.13%, 6p 12.86%, 5d 16.39%; Ac 6d 11.27%]; D<sub>xz</sub> [Ac 6d 68.66%; Au 6p 10.97%, 7s 7.37%]; D<sub>yz</sub> [Ac 6d 68.66%; Au 6p 10.97%, 7s 7.37%]; D<sub>z<sup>2</sup></sub> [Ac 6d 62.38%; Au 6p 23.06%]; F<sub>y</sub> [Au 6s 98.29%; Ac 5f 1.93%].

### References

- Y. Negishi, K. Nobusada and T. Tsukuda, *Journal of the American Chemical Society*, 2005, 127, 5261-5270.
- 2. C. M. Aikens, *The Journal of Physical Chemistry Letters*, 2011, **2**, 99-104.
- 3. O. Lopez-Acevedo, H. Tsunoyama, T. Tsukuda, H. Häkkinen and C. M. Aikens, *Journal of the American Chemical Society*, 2010, **132**, 8210-8218.