Supporting Information

Water Catalysis of the Reaction Between the Hydroxyl Radicals and Linear Saturated Alcohols (ethanol and npropanol) at 294 K

Rafael A. Jara-Toro,^{a,b,c} Federico J. Hernández,^{a,b,c} María de los A. Garavagno,^{a,b,c} Raúl A. Taccone^{a,b,c} and Gustavo A. Pino^{a,b,c,*}

- a) INFIQC (CONICET UNC) Ciudad Universitaria, X5000HUA Córdoba, Argentina.
- b) Dpto. de Fisicoquímica Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
- c) Centro Láser de Ciencias Moleculares Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.

%H _R	$[H_2O]^2 / 10^{35}$	$k_{obs}/10^{-12}$			
	(molecules ² cm [°])	(cm° molecule 's ')			
	Reported coefficient				
0	<<0.09	3.35 ± 0.17^{a}			
	Air				
28 ± 5	0.28	3.6± 0.1			
46 ± 5	0.77	3.8 ± 0.2			
62 ± 5	1.40	4.6 ± 0.4			
70 ± 5	1.78	5.3 ± 0.3			
90 ± 5	2.94	5.8 ± 0.3			
95 ± 5	3.28	6.4 ± 0.2^{b}			
100 ± 5	3.63	7.1 ± 0.4			
	N ₂ ultra pure				
5 ± 5	0.09	3.5 ± 0.1			
26 ± 5	0.25	3.7 ± 0.1			
40 ± 5	0.58	4.2 ± 0.2			
60 ± 5	1.31	4.3 ± 0.1			
70 ± 5	1.78	4.8± 0.2			
79 ± 5	2.27	5.5 ± 0.4			
100 ± 5	3.63	7.2± 0.2			

 Table S.1: Independent rate constants plotted in Figure 4.

a) Ref. 1b)Determined in a different reaction chamber(60 L collapsible Teflon bag)

% H _R	[H ₂ O] ² / 10 ³⁵ (molecules ² cm ⁻⁶)	k_{obs} / 10 ⁻¹² (cm ³ molecule ⁻¹ s ⁻¹)			
	Reported coefficie	ent			
0	<< 0.09	5.9 ± 0.6^{a}			
Air					
5 ± 5	0.09	6.1 ± 0.2^{b}			
25 ± 5	0.23	7.0 ± 0.4^{b}			
25 ± 5	0.23	$7.2 \pm 0.3^{\circ}$			
40 ± 5	0.58	$6.7 \pm 0.2^{\circ}$			
60 ± 5	1.31	$8.8 \pm 0.4^{\circ}$			
75 ± 5	2.04	$9.9 \pm 0.2^{\circ}$			
95 ± 5	3.28	11.5 ± 0.3°			
100 ± 5	3.63	12.5 ± 0.4 ^c			
100 ± 5	3.63	13.2 ± 0.6^{b}			
	N₂ultra pure				
5 ± 5	0.09	$6.2 \pm 0.2^{\circ}$			
60 ± 5	1.31	9.1 ± 0.3°			
70 ± 5	1.78	10.4 ± 0.3°			
85 ± 5	2.62	11.9 ± 0.3°			
95 ± 5	3.28	10.8 ± 0.3°			

 Table S.2: Independent rate constants plotted in Figure 5.

a) Ref.2 b) Reference reaction: C_5H_{12} + OH c) Reference reaction: C_7H_{16} + OH

All the computational results presented below have been calculated at the uCCSD(T)/aug-cc-pVDZ//uMP2/aug-cc-pVDZ level of theory, using the Gaussian 09 program package.³

Conformers	Structure	μ (D) MP2				
	C₂H₅OH					
C₂H₅OH-1		1.74				
C₂H₅OH-2	3395	1.87				
	C₃H ₇ OH					
C₃H7OH-1		1.66				
C₃H7OH-2		1.65				
C ₃ H ₇ OH-3		1.92				
C ₃ H ₇ OH-4		1,90				
C₃H7OH-5		1,83				

Table S.3: Structures and dipolar moments (μ) for the ROH conformers.

Table S.4: Relative energy including ZPE correction (Δ (E+ZPE), relative Gibbs free energy (Δ G°_{294K}), the corresponding equilibrium constants (K_{294K}) and dipolar moments (μ) of the ROH(H₂O) and OH(H₂O) complexes.The available literature values are also reported in red, forcomparison.

Complexes	Structure	Δ(E+ZPE) (kcal mol ⁻¹)	Δ G ° (kcal mol ⁻¹) ± 1 kcal/mol	K _{eq-294K} (cm³ molecule⁻¹)	K ^{max} _{eq-294K} - K ^{min} _{eq-294K} (cm ³ molecule ⁻¹)*	μ (D) MP2
OH(H ₂ O)	⊷ €	-3.83	1.59 1.14 ^a	2.6 x 10 ⁻²¹ 5.7 x 10 ^{-21a}	1.5x10 ⁻²⁰ - 4.8x10 ⁻²²	4.20 (3.75) ^b
		C₂l	l₅OH		L	
[C ₂ H ₅ OH(H ₂ O)] ₁	نې د <mark>د</mark> سه د کې کې	-3.96	2.28	8.0 x 10 ⁻²²	4.4x10 ⁻²¹ - 1.4x10 ⁻²²	2.80
[C ₂ H ₅ OH(H ₂ O)] ₂	૾ૺ૱૱	-3.93	2.52	5.4 x 10 ⁻²²	3.0x10 ⁻²¹ - 9.7x10 ⁻²³	2.94
[C ₂ H ₅ OH(H ₂ O)] ₃		-4.89	2.24	8.7 x 10 ⁻²²	4.8x10 ⁻²¹ - 1.6x10 ⁻²²	1.95
[C ₂ H ₅ OH(H ₂ O)] ₄	ంత్రించింది. సంత్రించిందింది	-4.50	2.25	8.6 x 10 ⁻²²	4.7x10 ⁻²¹ - 1.5x10 ⁻²²	2.21
[C ₂ H ₅ OH(H ₂ O)] ₅	300 0 000	-4.93	2.55	5.1 x 10 ⁻²²	2.8x10 ⁻²¹ - 9.2x10 ⁻²³	2.09
C ₃ H ₇ OH						
[C ₃ H ₇ OH(H ₂ O)] ₁	•• ••••	-4.07	2.17	9.8 x 10 ⁻²²	5.4x10 ⁻²¹ - 1.8x10 ⁻²²	2.91

[C ₃ H ₇ OH(H ₂ O)] ₂		-4.05	2.22	8.9 x 10 ⁻²²	4.9x10 ⁻²¹ - 1.6x10 ⁻²²	2.77
[C ₃ H ₇ OH(H ₂ O)] ₃		-4.05	2.18	9.5 x 10 ⁻²²	5.3x10 ⁻²¹ - 1.7x10 ⁻²²	3.01
[C ₃ H ₇ OH(H ₂ O)] ₄		-4.05	2.13	1.0 x 10 ⁻²¹	5.8x10 ⁻²¹ - 1.9x10 ⁻²²	3.27
[C ₃ H ₇ OH(H ₂ O)] ₅		-4.05	2.16	1.0 x 10 ⁻²¹	5.5x10 ⁻²¹ - 1.8x10 ⁻²²	3.05
[C ₃ H ₇ OH(H ₂ O)] ₆		-4.05	2.29	7.9 x 10 ⁻²²	4.4x10 ⁻²¹ - 1.4x10 ⁻²²	1.53
[C ₃ H ₇ OH(H ₂ O)] ₇		-4.89	2.35	7.1 x 10 ⁻²²	3.9x10 ⁻²¹ - 1.3x10 ⁻²²	1.81
[C ₃ H ₇ OH(H ₂ O)] ₈	ిని తిల సినితి	-5.04	2.16	9.9 x 10 ⁻²²	5.5x10 ⁻²¹ - 1.8x10 ⁻²²	2.06
[C₃H7OH(H2O)]9	ور مرکز کر مرکز کر	-5.03	2.47	5.9 x 10 ⁻²²	3.2x10 ⁻²¹ - 1.1x10 ⁻²²	2.72
[C ₃ H ₇ OH(H ₂ O)] ₁₀	303. - 35	-4.05	2.16	1.0 x 10 ⁻²¹	5.5x10 ⁻²¹ - 1.8x10 ⁻²²	2.04

[C ₃ H ₇ OH(H ₂ O)] ₁₁		-4.05	2.29	7.9 x 10 ⁻²²	4.4x10 ⁻²¹ - 1.4x10 ⁻²²	2.00
[C ₃ H ₇ OH(H ₂ O)] ₁₂	್ರಿಕ್ಸ್ ಕ್ರಿ ಕ್ರಿಕ್ಸ್ ಕ್ರಿಂ ಕ್ರಿಕ್ಸ್ ಕ್ರಿಂ	-4.05	2.18	9.6 x 10 ⁻²²	5.3x10 ⁻²¹ - 1.7x10 ⁻²²	2.38
[C ₃ H ₇ OH(H ₂ O)] ₁₃	30°- 1° 30°- 1° 30°-	-4.05	2.13	1.0 x 10 ⁻²¹	5.8x10 ⁻²¹ - 1.9x10 ⁻²²	2.34
[C ₃ H ₇ OH(H ₂ O)] ₁₄		-4.05	2.16	1.0 x 10 ⁻²¹	5.5x10 ⁻²¹ - 1.8x10 ⁻²¹	2.27

a) Theoretical values from ref. 4

b) Experimental value from ref. 5

*The values of $K^{max}_{eq-294K}$ and $K^{min}_{eq-294K}$ were obtained assuming a minimum error of ± 1 kcal/mol in the values of ΔG° . Therefore, $K^{max}_{eq-294K}$ corresponds to the values obtained using ($\Delta G^{\circ} - 1$) kcal/mol and $K^{min}_{eq-294K}$ corresponds to the values obtained using ($\Delta G^{\circ} + 1$) kcal/mol. The goal of this values is to get some estimation of the lowest error on the K_{eq-294K}.

Reactants	CRj	ΤS _j	CPj
		TS _{α1} -1.18	CP _{α1} -24.13
OH + C₂H₅OH-1	CR _{α,β,ο} -5.23	TS _{β1} 3.74	CΡ _{β1} -18.98
(0.0)		TS ₀₁ 3.07	CP ₀₁ -16.60
	CR _{β2} -0.88	TS _{β2} 0.60	CP _{β2} -15.49
	CR _{α2}	TS _{α2} -1.91	CP _{α2} -25.90
OH + C₂H₅OH-2 (0.0)	-5.14	TS _{α3} -1.45	CΡ _{α3} -25.90
		TS _{β3} -1.44	CΡ _{β3} -20.02
	CR _{β,o} -5.27	TS _{β4} 2.66	CΡ _{β4} -16.70
		TS₀₂ 2.55	CP ₀₂ -16.34

Table S.5: Relative energies (Δ (E+ZPE), in kcal mol⁻¹) of the stationary points for the reaction OH + C₂H₅OH underdry conditions.

Reactants	CR _j -W	TSj-W	CP _j -W
	CR _a -W	CR _{α1} -W -2.83	CR _{α1} -W -25.94
	-7.81	CR _{α2} -W -4.66	CR _{α2} -W -30.07
OH(H₂O) + C₂H₅OH-1	CR _{β1} -W	TS _{β1} -W	CP _{β1} -W
	-6.96	-1.54	-21.77
(0.0)	CR _{β2} -W	TS _{β2} -W	CP _{β2} -W
	-11.84	0.22	-23.60
	CR _{β3} -W	TS _{β3} -W	CP _{β3} -W
	-12.96	2.55	-23.64
	CR ₀₁ -W	TS ₀₁ -W	CP ₀₁ -W
	-8.36	0.87	-19.18
	CR _{α1} -W	TS _{α1} -W	CP _{α1} -W
	-7.10	-4.42	-29.65
OH(H ₂ O) + C ₂ H ₅ OH-2	CR _{α2} -W	TS _{α2} -W	CP _{α2} -W
(0.0)	-3.39	-2.59	-25.89
	CR _{α3} -W	TS _{α3} -W	CΡ _{α3} -W
	-7.43	-2.36	-29.96

Table S.6:Relative energies (Δ (E+ZPE), in kcal mol⁻¹) of the stationary points for the reaction OH + C₂H₅OH including one water molecule.

CR _{β4} -W	TS _{β4} -W	CP _{β4} -W
-7.43	-1.41	-22.19
CR _{β5} -W	TS _{β5} -W	CP _{β5} -W
-8.64	-2.05	-23.51
CR ₀₂ -W	TS ₀₂ -W	CP _{o2} -W
-8.22	0.41	-19.20
CR ₀₃ -W	TS ₀₃ -W	CP ₀₃ -W
-8.45	0.15	-19.18

Reactants	CR _j -WW	TS _j -WW	CP _j -WW
	$CR_{\alpha 1}$ -WW	$CR_{\alpha 1}$ -WW	$CR_{\alpha 1}$ -WW
	-10.15	-9.55	-34.24
	$CR_{\alpha 2}$ -WW	$CR_{\alpha 2}$ -WW	$CR_{\alpha 2}$ -WW
	-14.05	-11.11	-35.39
	CR _{α3} -WW	CR _{α3} -WW	CR _{α3} -WW
	-13.95	-9.42	-34.75
OH(H ₂ O) + [C ₂ H ₅ OH(H ₂ O)] ₁	CR _{α4} -WW	CR _{α4} -WW	CR _{α4} -WW
(0.0)	-10.66	-6.07	-29.36
	CR _{β1} -WW	TS _{β1} -WW	CP _{β1} -WW
	-13.95	-6.96	-28.89
	CR _{β2} -WW	TS _{β2} -WW	CP _{β2} -WW
	-10.66	-4.45	-29.60
	CR ₀₁ -WW	TS ₀₁ -WW	CP ₀₁ -WW
	-13.52	-3.50	-21.00
	CR _{α5} -WW	TS _{α5} -WW	CP _{α5} -WW
$OH(H_2O) + [C_2H_5OH(H_2O)]_2$	-9.88	-9.51	-34.04
(0.0)	CR _{α6} -WW	TS _{α6} -WW	CP _{α6} -WW
	-14.08	-10.96	-35.23

Table S.7:Relative energies (Δ (E+ZPE), in kcal mol⁻¹) of the stationary points for the reaction OH + C₂H₅OH including two water molecules.

CR _{a7} -WW	TS_{a_7} -WW	CP _{a7} -WW
-13.92	-9.29	-34.63
$CR_{\alpha 8}$ -WW	$TS_{\alpha 8}$ -WW	CP _{a8} -WW
-10.58	-6.24	-34.00
CR _{β3} -WW	TS _{β3} -WW	CP _{β3} -WW
-14.15	-7.72	-28.72
CR _{o2} -WW	TS ₀₂ -WW	CP _{o2} -WW
-8.65	5.7	-21.84

Reactants	CRj	ΤSj	CPj
		TS _{α1}	CP _{α1}
		-1.43	-23.88
		$TS_{\alpha 2}$	CP _{α2}
		-1.68	-24.10
		$TS_{\beta 1}$	$CP_{\beta 1}$
		0.52	-19.04
		$TS_{\mathfrak{\beta}_2}$	$CP_{\beta 2}$
OH + C₃H ₇ OH-1		1.06	-21.72
(0.0)	CR _{α,β,γ,ο}	TS_{y_1}	$CP_{\gamma 1}$
	-5.46	-0.22	-20.35
		TS₀₁	
		2.95	-16.89
		TS _{β3}	CP _{β3}
		-1.44	-20.02
		$TS_{\beta4}$	$CP_{\beta4}$
		2.66	-16.70
		TS _{o2}	CP _{o2}
		2.55	-16.34

Table S.8: Relative energies (Δ (E+ZPE), in kcal mol⁻¹) of the stationary points for the reaction OH + C₃H₇OH-1 under dry conditions.

Reactants	CR _j -W	TSj-W	CP _j -W
OH(H ₂ O) + C ₃ H ₇ OH-1 (0.0)	CR _{α1} -W -3.16	TS _{α1} -W -3.07	CΡ _{α1} -W -25.77
	CR _{β1} -W -1.60	TS _{β1} -W 0.14	CΡ _{β1} -W -19.35
	CR _{β2} -W -10.8	TS _{β2} -W -1.04	CP _{β2} -W -21.21
	CR _{β3} -W -12.18	TS _{β3} -W -2.07	CP _{β3} -W -25.96
	CR ₀₁ -W -8.48	TS ₀₁ -W 0.73	CP ₀₁ -W -19.54

Table S.9:Relative energies (Δ (E+ZPE), in kcal mol⁻¹) of the stationary points for the reaction OH + C₃H₇OH-1including one water molecule.

Reactants	CR _j -WW	TS _j -WW	CP _j -WW
OH(H ₂ O) + [C ₃ H ₇ OH(H ₂ O)] ₁ (0.0)	CR _{α1} -WW -14.12	TS _{α1} -WW -9.89	CΡ _{α1} -WW -34.30
	CR _{α2} -WW -14.12	TS _{α2} -WW -11.41	CP _{α2} -WW -35.18
	CR _{α3} -WW -14.10	TS _{α3} -WW -9.78	CP _{α3} -WW -34.00
	CR _{α4} -WW -10.69	TS _{α4} -WW -6.63	CP _{α4} -WW -35.60
	CR ₀₁ -WW -17.27	TS ₀₁ -WW -4.42	CP ₀₁ -WW -22.86

Table S.10: Relative energies (Δ (E+ZPE), in kcal mol ⁻¹)	of the stationary points for the reaction
OH + C ₃ H ₇ OH-1 including two water molecules as cataly	yst.

Bibliography

- 1 T. J. Dillon, D. Hölscher, V. Sivakumaran, a Horowitz and J. N. Crowley, *Phys. Chem. Chem. Phys.*, 2005, **7**, 349–55.
- 2 B. Rajakumar, D. C. McCabe, R. K. Talukdar and A. R. Ravishankara, *Int. J. Chem. Kinet.*, 2010, **42**, 10–24.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
 G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
 H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
 Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
 H. Nakai, T. Vreven, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
 Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.
 Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M.
 Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
 Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,
 K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich,
 A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox,
 Gaussian09 (Revision D.01),Gaussian Inc. Wallingford, CT. 2009.
- 4 M. A. Allodi, M. E. Dunn, J. Livada, K. N. Kirschner and G. C. Shields, *J. Phys. Chem. A*, 2006, **110**, 13283–13289.
- 5 F. J. Hernandez, J. T. Brice, C. M. Leavitt, T. Liang, P. L. Raston, G. A. Pino and G. E. Douberly, *J. Chem. Phys.*, 2015, **143**, 164304.