Effect of Cu intercalation on humidity sensing properties of Bi₂Se₃ topological insulator single crystals

Kushal Mazumder¹, Alfa Sharma², Yogendra Kumar² and Parasharam M. Shirage^{1, 2, *}

¹Discipline of Physics, Indian Institute of Technology Indore, Simrol, Indore-453552, India

²Discipline of Metallurgy Engineering & Materials Science, Indian Institute of Technology Indore, Simrol, Indore-453552, India

Supplementary Information

Table 1: Structural parameters obtained from a Rietveld refinement of room temperature powder

 x-ray patterns shown in Fig. 3.

Sample	Atom	X	Y	Z	Occupancy
Bi ₂ Se ₃	Bi	0	0	0.40276	0.09211
<i>a=b=</i> 4.141±0.003Å	Se1	0	0	0	0.08892
<i>c</i> =28.665±0.002Å	Se2	0	0	0.20841	0.18040
$Cu_{0.13}Bi_2Se_3$	Bi	0	0	0.40142	0.08779
<i>a=b=</i> 4.141±0.002Å	Se1	0	0	0	0.03658
<i>c</i> =28.713±0.003Å	Se2	0	0	0.20091	0.08305
Cu _{0.25} Bi ₂ Se ₃	Bi	0	0	0.40089	0.08478
<i>a=b=</i> 4.141±0.004Å	Se1	0	0	0	0.01031
<i>c</i> =28.734±0.003Å	Se2	0	0	0.20024	0.02358

RH%	Bi ₂ Se ₃	Cu _{0.13} Bi ₂ Se ₃	$Cu_{0.25}Bi_2Se_3$
8	0.00177	0.00021	0.00050
33	0.00188	0.00966	0.00117
43	0.00212	0.00318	0.00133
52	0.00070	0.00546	0.00104
63	0.00377	0.00028	0.00084
75	0.00396	0.00693	0.00079
86	0.00115	0.00481	0.00048
97	0.00041	0.00021	0.00023

Table 2: Hysteresis values of pure and Cu intercalated Bi_2Se_3 (Cu₀ Bi_2Se_3 , Cu_{0.13} Bi_2Se_3 and Cu_{0.25} Bi_2Se_3) at different levels of %RH.

Table 3: Freundlich adsorption isotherm model results, including adsorption capacity (*k*), adsorption strength (α), and R² values vs. the experimental data for humidity sensing using Bi₂Se₃, Cu_{0.13}Bi₂Se₃ and Cu_{0.25}Bi₂Se₃.

Sample	Low RH Regime			High RH Regime		
	k	α	R ²	k	α	R ²
Bi ₂ Se ₃	1.03±0.06	1.72±0.14	0.96	1.32±0.27	0.40±0.04	0.97
Cu _{0.13} Bi ₂ Se ₃	2.31±0.29	1.22±0.16	0.87	1.46±0.31	0.66±0.09	0.92
Cu _{0.25} Bi ₂ Se ₃	4.3±0.19	0.91±0.08	0.92	3.03±0.16	0.87±0.02	0.95

Table 4: Comparative analysis of Cu intercalated Bi_2Se_3 TI humidity sensor in terms of linear range, sensitivity, response and recovery time with available literatures.

Material	Linear Range (%)	Sensitivity	Response/ Recovery Time (s)	Reference
ZnO nanowires	25 to 90	184	NA	1
MoS ₂ film	13.3 to 83.5	16.08(p-type) 89.66(n-type)	55s/288s(p-type) 174s/345s(n-type)	2
SnO ₂ :Sn composite thin film	11 to 95	265	80s/140s	3
CuO nanowires	20 to 90	12.72%	NA	4
Porous titania ceramics	11 to 95	~104	32s/131s	5
ZnO nanosheets	12 to 96	220	600s/3s	6
Sn-doped ZnO nanorod Arrays	40 to 90	3.41	230s/30s	7
ZnO nanorods	33 to 95	61.23	NA	8
SnO ₂ Nanowire	5 to 85	32	120s/20s	9
WS ₂ /WSe ₂ Nanohybrids	40 to 80	57	40s/65s	10
Fe ₂ O ₃ /SiO ₂ composites	11 to 95	104	20s/40s	11
WS ₂ nanosheets	40 to 80	37.5	13s/17s	12
NiO–SnO ₂ nanofibers	0 to 100	83	22s/44s	13
Polyaniline/WS ₂ composite	10 to 97	88.46	56s/70s	14
rGO/MoS ₂ hybrid composites	10 to 90	49	17s/474s	15
Single crystalline ZnO nanowire	10 to 90	88	60s/3s	16
Co doped mesoporous TiO ₂	9 to 90	105	24s/400s	17

WS ₂ /GO Nanohybrids	40 to 80	0.044/%RH	25s/29s	18
TiO ₂ nanotubes	11 to 95	~57	100s/190s	19
TiO ₂ nanowires /Nafion	12 to 97	>1000	<120s/<120s	20
TiO ₂ thin film	11 to 97	~10 ²	10s/176s	21
ZnO nanocrystals	5 to 85	150	50s/6s	22
graphene/TiO ₂ composites	12 to 90	10 ²	128s/68s	23
WO ₃ -SnO ₂ nanospheres	35 to 98	16.2	8s/29s	24
MoS ₂ Thin Film	25 to 40	5.5	250s/250s	25
MoS ₂ Nanosheets	10 to 60	~3	9s/17s	26
WS ₂ spherical nanoparticle	11 to 97	469	12s/13s	27
VS ₂ nanosheets	0 to 100	~325	40s/50s	28
SnSe nanorods	11-97	~100	68/149s	29
Zn _{1-x} Ni _x O nanostructures	33-97	152	27/3 s	30
CoFe ₂ O ₄ nanoparticles	8-97	~590	25/2.6 s	31
Cu _x Bi ₂ Se ₃	8-97	849	24 s/25 s	This work

Reference:

- 1. S. P. Chang, S. J. Chang, C. Y. Lu, M. J. Li, C. L. Hsu, Y. Z. Chiou, T. J. Hsueh and I. C. Chen, *Superlattices and Microstructures*. 2010, 47, 772-778.
- 2. J. Shin, Y. Hong, M. Wu, J. H. Bae, H. I. Kwon, B. G. Park and J. H. Lee, Sens. Actuators, B 2018, 258, 574-579.
- L. L. Wang, L. P. Kang, H. Y. Wang, Z. P. Chen and X. J. Li, Sens. Actuators, B 2016, 229, 513-519.
- H.T. Hsueh, T. J. Hsueh, S. J. Chang, F. Y. Hung, T. Y. Tsai, W.Y. Weng, C. L. Hsu and B.T. Dai, Sens. Actuators, B 2011, 156, 906-911.
- 5. X. Wang, J. H. Li, Y. L. Li, L. J. Liu and W. Guan, Sens. Actuators, B 2016, 237, 894-898.
- 6. F. S. Tsai and S. J. Wang, Sens. Actuators, B 2014, 193, 280-287.

- A. S. Ismail, M. H. Mamat, N. D. Md. Sin, M. F. Malek, A. S. Zoolfakar, A. B. Suriani, A. Mohamed, M. K. Ahmad and M. Rusop, *Ceramics International* 2016, 42, 9785-9795.
- 8. K. Narimani, F. D. Nayeri, M. Kolahdouz and P. Ebrahimi Sens. Actuators, B 2016, 224, 338-343.
- Q. Kuang, C. Lao, Z. L. Wang, Z. Xie and L. Zheng, J. Am. Chem. Soc. 2007, 129, 6070-6071.
- 10. R. K. Jha and P. K. Guha, IEEE Transactions on Nanotechnology 2018, 17, 582-589.
- 11. Q. Yuan, N. Li, W. Geng, Y. Chi, J. Tuc, X. Li and C. Shao, Sens. Actuators, B 2011, 160, 334-340.
- 12. R. K. Jha and P. K. Guha, Nanotechnology 2016, 27, 475503 1-11.
- 13. P. Pascariua, A. Airinei, N. Olaru, I. Petrila, V. Nicad, L. Sacarescua and F. Tudorache, *Sens. Actuators, B* 2016, **222**, 1024-1031.
- 14. S. Manjunatha, B. Chethan, Y. T. Ravikiran and T. Machappa, *AIP Conf. Proc.* 2018, **1953**, 030096-1-4.
- 15. S. Y. Park, J. E. Lee, Y. H. Kim, J. J. Kim, Y. S. Shim, S. Y. Kim, M. H. Lee and H. W. Jang, *Sens. Actuators, B* 2018, **258**, 775-782.
- N. M. Kiasari, S. Soltanian, B. Gholamkhass and P. Servati, Sens. Actuators, A 2012, 182, 101-105.
- 17. Z. Li, A. A. Haidry, B. Gao, T. Wang and Z. J. Yao, Appl. Surf. Sci. 2017, 412, 638-647.
- 18. R. K. Jha, D. Burman, S. Santra and P. K. Guha, IEEE Sens 2017, 17, 7340-7347.
- 19. Y. Zhang, W. Fu, H. Yang, Q. Qi, Y. Zeng, T. Zhang, R. Ge and G. Zou, *Appl. Surf. Sci.* 2008, **254**, 5545-5547.
- 20. R. J. Wu, Y. L. Sun, C. C. Lin, H. W. Chen and M. Chavali, Sens. Actuators, B 2006, 115, 198-204.
- 21. K. P. Biju and M. K. Jain, Meas. Sci. Technol. 2007, 18, 2991-2996.
- 22. X. Ning, Z. Wang and Z. Zhang, Adv. Funct. Mater. 2014, 24, 5393-5401.
- 23. W. D. Lina, C. T. Liao, T. C. Chang, S. H. Chen and R. J. Wu, Sens. Actuators, B 2015, 209, 555-561.
- 24. H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Lia and T. Wang, *J. Mater. Chem. A* 2014, **2**, 6854-6862.
- 25. S. Guo, A. Arab, S. Krylyuk and A. V. Davydov, Proceedings of the 17th IEEE International Conference on Nanotechnology, 2017 (doi:10.1109/NANO.2017. 8117408).
- 26. S. L. Zhang, H. H. Choi, H. Y. Yue and W. C. Yang, Curr. Appl. Phys. 2014, 14, 264-268.
- A. S. Pawbake, R. G. Waykar, D. J. Late and S. R. Jadkar, *Appl. Mater. Interfaces* 2016, 8, 3359-3365.
- 28. J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang and Y. Xie, Adv. Mater. 2012, 24, 1969-1974.
- 29. A. S. Pawbake, S. R. Jadkar and D. J. Late, Mater. Res. Express 2016, 3, 105038(1-8).
- A. Sharma, Y. Kumar, K. Mazumder, A. K. Rana and P. M. Shirage, *New J. Chem.* 2018, 42, 8445-8457.
- 31. Y. Kumar, A. Sharma and P. M. Shirage, RSC Adv. 2017, 7, 55778-55785.