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1. Formation energy per atom of cI16 phase

We calculated the formation energy per atom of c116 phase with different pressures with DFT method. 
The reference energy is from the ground state bcc phase Li under zero pressure. We present the 
formation energy information in the Figure. S1.

Figure. S1. The formation energy per atom of cI16 phase Li versus the pressure. The referenced energy is from the ground state bcc 

phase Li. 

2. Different exchange-correlation functional effect in the electronic band structures and 
phonon dispersions

Here, the pseudopotentials based on the projector augmented wave (PAW)1 method were adopted. We 
adopt different exchange-correlation functionals - local density approximation (LDA)2 and Perdew-
Burke-Ernzerhof (PBE) generalized gradient approximation (GGA)3 - in Vienna ab-initio simulation 
package (VASP)4,5. At the same time, we also did the DFT calculation in VASP with Heyd–Scuseria–
Ernzerhof (HSE)6,7 approach. The cutoff of kinetic energy for wave functions was set at 500 eV and the 

energy convergence threshold was set as  eV. The Monkhorst8-Pack k-meshes of   were 10 ‒ 8 8 × 8 × 8

used to sample the Brillouin Zone (BZ). We applied the density functional perturbation theory (DFPT)9 
method in VASP to calculate the phonon dispersions via the PHONOPY10 package. The Hellmann–

Feynman force tolerance is . We showed the calculation results of the electronic band 10 ‒ 6 𝑒𝑉 Å ‒ 1

structures and phonon dispersions of cI16 phase Li under different pressures in Figure. S2. and Figure. 
S3., respectively. 

Figure. S2.  The electronic bands structures of cI16 Li under different pressure. The XC functionals LDA, GGA and HSE06 are 

employed in VASP.
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Figure. S3. The phonon dispersions of cI16 Li under different pressure. The XC functionals LDA, GGA and HSE06 are employed in 

VASP.

From the results we can see that the electronic band structures near the Fermi level, where the 
electron-phonon interaction has the most impact on the superconducting properties, are nearly 
identical for all three functionals, with appreciable difference only in energy bands far from the Fermi 
level. In the phonon dispersions, the major contributors to the electron-phonon interaction - the low-
frequency acoustic phonons, are also less influenced by the choice of the functionals. Based on these 
observations, we expect small impact of different functionals on the calculated results. 
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