

Supplementary Materials for

Electron-phonon interaction and superconductivity in the high-pressure c116 phase of lithium from first-principles

Sheng-Ying Yue^{1,2} Long Cheng^{3,4}, Bolin Liao^{2,*} and Ming Hu^{1,3,5,†}

¹*Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, 52062 Aachen, Germany*

²*Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA*

³*Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52064 Aachen, Germany*

⁴*Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA*

⁵*College of Engineering and Computing, University of South Carolina, SC 29208, USA*

Author to whom all correspondence should be addressed. *E-Mail: bolin@ucsb.edu and †E-Mail: hu@sc.edu (M.H.).

1. Formation energy per atom of cI16 phase

We calculated the formation energy per atom of cI16 phase with different pressures with DFT method. The reference energy is from the ground state bcc phase Li under zero pressure. We present the formation energy information in the Figure. S1.

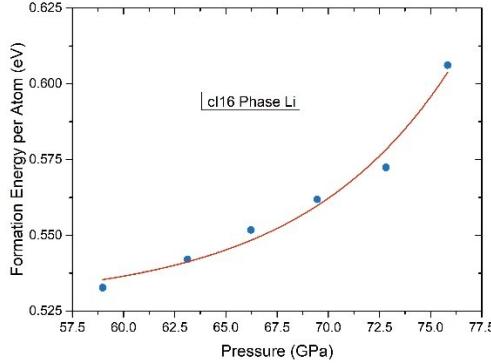


Figure. S1. The formation energy per atom of cI16 phase Li versus the pressure. The referenced energy is from the ground state bcc phase Li.

2. Different exchange-correlation functional effect in the electronic band structures and phonon dispersions

Here, the pseudopotentials based on the projector augmented wave (PAW)¹ method were adopted. We adopt different exchange-correlation functionals - local density approximation (LDA)² and Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA)³ - in Vienna ab-initio simulation package (VASP)^{4,5}. At the same time, we also did the DFT calculation in VASP with Heyd-Scuseria-Ernzerhof (HSE)^{6,7} approach. The cutoff of kinetic energy for wave functions was set at 500 eV and the energy convergence threshold was set as 10^{-8} eV. The Monkhorst⁸-Pack k-meshes of $8 \times 8 \times 8$ were used to sample the Brillouin Zone (BZ). We applied the density functional perturbation theory (DFPT)⁹ method in VASP to calculate the phonon dispersions via the PHONOPY¹⁰ package. The Hellmann-Feynman force tolerance is 10^{-6} eV Å⁻¹. We showed the calculation results of the electronic band structures and phonon dispersions of cI16 phase Li under different pressures in Figure. S2. and Figure. S3., respectively.

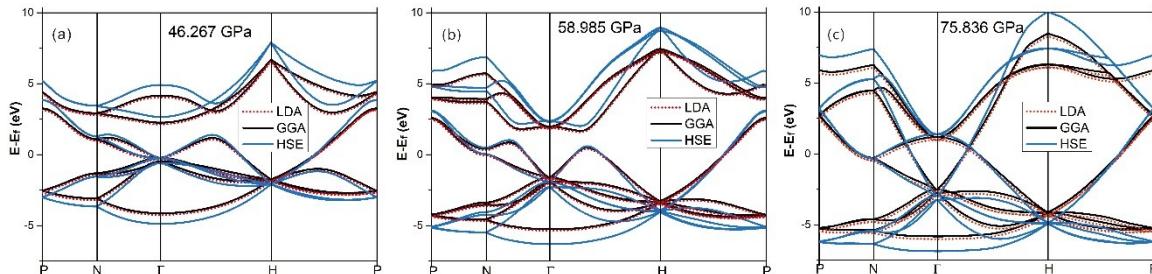
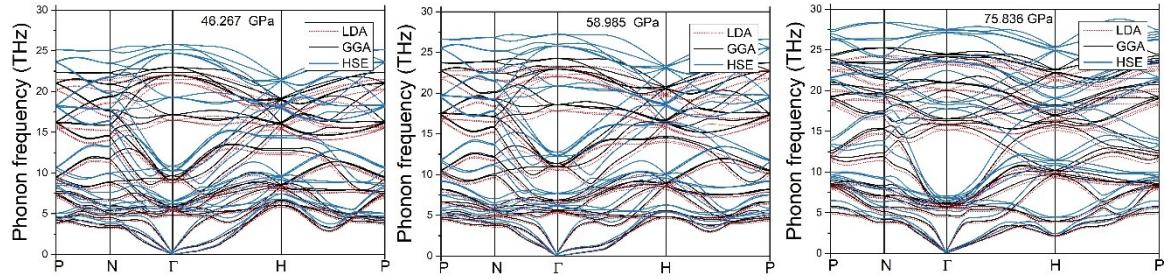



Figure. S2. The electronic bands structures of cI16 Li under different pressure. The XC functionals LDA, GGA and HSE06 are employed in VASP.

Figure. S3. The phonon dispersions of cl16 Li under different pressure. The XC functionals LDA, GGA and HSE06 are employed in VASP.

From the results we can see that the electronic band structures near the Fermi level, where the electron-phonon interaction has the most impact on the superconducting properties, are nearly identical for all three functionals, with appreciable difference only in energy bands far from the Fermi level. In the phonon dispersions, the major contributors to the electron-phonon interaction - the low-frequency acoustic phonons, are also less influenced by the choice of the functionals. Based on these observations, we expect small impact of different functionals on the calculated results.

References

- (1) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* **1999**, *59* (3), 1758–1775.
- (2) Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for

- Many-Electron Systems. *Phys. Rev. B* **1981**, *23* (10), 5048–5079.
- (3) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77* (18), 3865–3868.
 - (4) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54* (16), 11169–11186.
 - (5) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Computational Materials Science* **1996**, *6* (1), 15–50.
 - (6) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. *The Journal of Chemical Physics* **2003**, *118* (18), 8207–8215.
 - (7) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid Functionals Based on a Screened Coulomb Potential” [J. Chem. Phys. 118, 8207 (2003)]. *The Journal of Chemical Physics* **2006**, *124* (21), 219906.
 - (8) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev. B* **1976**, *13* (12), 5188–5192.
 - (9) Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. *Rev. Mod. Phys.* **2001**, *73* (2), 515–562.
 - (10) Togo, A.; Oba, F.; Tanaka, I. First-Principles Calculations of the Ferroelastic Transition between Rutile-Type and CaCl₂-Type SiO₂ at High Pressures. *Phys. Rev. B* **2008**, *78* (13), 134106.
 - (11) Poncé, S.; Margine, E. R.; Verdi, C.; Giustino, F. EPW: Electron–Phonon Coupling, Transport and Superconducting Properties Using Maximally Localized Wannier Functions. *Computer Physics Communications* **2016**, *209*, 116–133.
 - (12) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials - IOPscience <http://iopscience.iop.org/article/10.1088/0953-8984/21/39/395502/meta> (accessed Sep 28, 2018).
 - (13) Bazhirov, T.; Noffsinger, J.; Cohen, M. L. Superconductivity and Electron-Phonon Coupling in Lithium at High Pressures. *Phys. Rev. B* **2010**, *82* (18), 184509.
 - (14) Yao, Y.; Tse, J. S.; Tanaka, K.; Marsiglio, F.; Ma, Y. Superconductivity in Lithium under High Pressure Investigated with Density Functional and Eliashberg Theory. *Phys. Rev. B* **2009**, *79* (5), 054524.