Electronic Supporting Information

for

Small molecule binders recognize DNA microstructural variations via an induced fit mechanism

E. Kathleen Carter^a, Sarah Laughlin-Toth^{a,b}, Thomas Dodd^a, W. David Wilson^a, and Ivaylo Ivanov^a

^aDepartment of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta,

GA, USA

*Corresponding author:

Ivaylo Ivanov Email: iivanov@gsu.edu Tel: +1 404 413 5529 Fax: +1 404 413 5505

*Corresponding author:

W. David Wilson Email: wdw@gsu.edu Tel: +1 404 413 5503 Fax: +1 404 413 5505

Present Address: ^bAflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA

Supplementary Methods Information

Ab initio determination of pKa

In order to confirm the protonation state of the azabenzimidazole ring of DB2277, we used the Born-Haber thermodynamic cycle depicted in Figure S3A [1]. Accordingly, the definition of ΔG^0 is given by

$$\Delta G^{0} = -\Delta G_{solv}(HA) + \Delta G_{vap}(H_{2}O) + \Delta G_{vac}^{0} + \Delta G_{solv}(A^{-}) + \Delta G_{solv}(H_{3}O^{+})$$

where both $-\Delta G_{solv}(HA)$ and $\Delta G_{solv}(A^{-})$ are taken into account to determine the energy difference between optimized geometries in the solution and gas phases (ΔE_{relax}) in accordance with .

$$-\Delta G_{solv}(HA) = -[G_{solv}(HA) - G_{gas}(HA) + \Delta E_{relax}(HA)]$$
$$\Delta G_{solv}(A^{-}) = G_{solv}(A^{-}) - G_{gas}(A^{-}) + \Delta E_{relax}(A^{-})$$

The pKa is related to ΔG^0 through

$$pKa = \frac{\Delta G^0}{2.303RT}$$

The values for $\Delta G_{vap}(H_2 0)$ and $\Delta G_{solv}(H_3 0^+)$ are -6.28 kcal/mol and -264.61 kcal/mol, respectively. Additionally, we accounted for our experimental conditions of 1 atm at 310 K to make the final expression for the determination of pKa to be

$$pKa (1 atm, 310 K) = \frac{-\Delta G_{solv}(HA) + \Delta G_{vac}^{0} + \Delta G_{solv}(A^{-}) - 268.921}{1.418}$$

All calculations were performed using the 6-31G+* basis set at the B3LYP DFT level of theory in Gaussian09. We first built DB2277 in four different protonation states on the azabenzimidazole ring: (1) doubly-protonated at N3 and N2, (2) singly-protonated at N3 (3) singly-protonated at N2 and (4) completely de-protonated. Each molecule separately underwent geometry optimization using the polarizable continuum model (PCM) [2,3] as implemented in Gaussian09 to mimic solution phase conditions. Then the molecule was transferred to the gas phase and the internal energy was calculated while it maintained the PCM optimized configuration. Geometry optimization of the molecule was then performed in the gas phase starting with the optimized PCM structure. The difference in energy between geometry optimized gas phase structure and PCM structure is the relaxation energy, ΔE_{relax} . Calculation of the optimized geometries allowed us to compute theoretical pKa values using the Born-Haber thermodynamic cycle. Results can be found in Table S3 and Figure S3B.

Supplementary Figures and Tables

Figure S1. Six sequences of interest and corresponding orientations of DB2277. (**A**) AAAAGTTTT (**B**) AATTGAATT (**C**) ATATGATAT (**D**) AAAAGCTTTT (**E**) AATTGCAATT (**F**) ATATAGCATAT. (**A-C**) The single G•C sequences are non-palindromic and the asymmetric small molecule DB2277 was positioned in two orientations in the minor groove. (**5**' \rightarrow **3**' **Orientation**) In the 5' \rightarrow 3' orientation, amidine-1 (green) is closest to the 5' end of the target sequence. (**3**' \rightarrow **5**' **Orientation**) In the 3' \rightarrow 5' orientation, amidine-1 is closest to the 3' end of the target sequence. (**D-F**) The GpC sequences are palindromic, therefore, only one orientation of DB2277 was required.

Figure S2. DB2277 atom numbers

Table S1. RESP charges for DB2277

	Atom Name	Atom Type	Charge		Atom Name	Atom Type	Charge
1	N4	n2	-0.8408	26	H2	ha	0.1927
2	H8	hn	0.4461	27	C3	са	-0.3945
3	H9	hn	0.4461	28	H1	ha	0.1843
4	C12	са	0.7536	29	C13	са	0.5710
5	N5	n2	-0.8408	30	01	OS	-0.2454
6	H10	hn	0.4461	31	C14	c3	-0.0063
7	H11	hn	0.4461	32	H12	h1	0.0832
8	C11	CC	-0.1912	33	H13	h1	0.0832
9	C10	CC	-0.1008	34	C15	са	0.2101
10	C8	cd	-0.0635	35	C16	са	-0.1700
11	H5	ha	0.1213	36	H14	ha	0.1474
12	H7	ha	0.1375	37	C18	са	-0.0480
13	C9	CC	-0.1008	38	H16	ha	0.1324
14	H6	ha	0.1375	39	C20	са	-0.2510
15	C7	cd	-0.0635	40	C21	са	0.7810
16	H4	ha	0.1213	41	N6	n2	-0.8413
17	C6	cd	0.0221	42	H18	hn	0.44690
18	C5	CC	0.4458	43	H21	hn	0.44690
19	N3	nc	-0.4495	44	N7	n2	-0.8413
20	N2	na	-0.7654	45	H19	hn	0.44690
21	H3	hn	0.4364	46	H20	hn	0.44690
22	C2	са	0.8120	47	C19	са	-0.0480
23	N1	nb	-0.7281	48	H17	ha	0.13240
24	C1	са	0.0201	49	C17	са	-0.1700
25	C4	са	-0.0922	50	H15	ha	0.14740

	DB2277 Parameterization								
MASS									
BOND									
ANGLE									
cc-nc-ca	70.56	107.15			Added by ANTECHAMBER				
os-c3-ca	100.14	109.18			Calculated using Gaussian09				
c3-os-ca	70.35	119.79			Calculated using Gaussian09				
ca-ca-n2	54.0	119.66			Cheatham, T.E. DOI: 10.1021/ja025660d				
cc-ca-n2	54.0	119.66			Cheatham, T.E. DOI: 10.1021/ja025660d				
n2-ca-n2	70.0	122.00			sp2 geometry				
DIHE									
c3-os-ca-ca	2	3.24	180.0	2.0	Calculated using Gaussian09				
na-cc-cd-cd	4	3.39	180.0	2.0	Calculated using Gaussian09				
cc-cc-ca-n2	4	1.99	180.0	2.0	Calculated using Gaussian09				
n2-ca-ca-ca	4	1.70	180.0	2.0	Calculated using Gaussian09				
ca-c3-os-ca	3	9.00	0.0	1.0	Calculated using Gaussian09				
ca-ca-ca-n2	4	0.79	327.0	-4.0	Cheatham, T.E. DOI: 10.1021/ia025660d				
ca-ca-ca-n2	4	-3.12	0.0	-4.0	Cheatham, T.E. DOI: 10.1021/ia025660d				
ca-ca-ca-n2	4	0.610	90.0	1.0	Cheatham, T.E. DOI: 10.1021/ia025660d				
ca-ca-n2-hn	4	9.60	180.0	2.0	Added from parm99 dat				
cc-ca-n2-hn	4	9.60	180.0	2.0	Added from parm99 dat				
IMPROPER									
cc-n2-ca-n2	1.1	180.0	2.0		Using default value				
ca-cc-cc-cc	1.1	180.0	2.0		Using default value				
cc-cd-cc-ha	1.1	180.0	2.0		Using default value				
cc-cd-cd-ha	1.1	180.0	2.0		Using default value				
cc-cd-cd-cd	1.1	180.0	2.0		Using default value				
cd-na-cc-nc	1.1	180.0	2.0		Using default value				
ca-cc-na-hn	1.1	180.0	2.0		General improper torsional angle (2 general atom types)				
ca-na-ca-nb	1.1	180.0	2.0		Using default value				
ca-ca-ca-nc	1.1	180.0	2.0		Using default value				
ca-ca-ca-ha	1.1	180.0	2.0		General improper torsional angle				
					(2 general atom types)				
ca-nb-ca-os	1.1	180.0	2.0		Using default value				
ca-ca-ca-ca	1.1	180.0	2.0		Using default value				
ca-n2-ca-n2	1.1	180.0	2.0		Using default value				
NONDON									
NUNBUN									

Table S2. AMBER force field modification file (.frcmod). Parameters not found in the GAFF force field

 were added by ANTECHAMBER or calculated using *ab initio* methods in Gaussian09

 Table S3 Computed pKa values for azabenzimidazole nitrogens N2 and N3

Figure S3 Theoretically determined pKa values for the imidazole ring of DB2277. (**A**) Thermodynamic cycle used in the determination of the pKa's based on [1]. (**B**) Depiction of the deprotonation and resultant pKa at each site.

Figure S4. Change in translational inter-base pair parameters upon binding. Translational parameters (shift, slide, rise) for sequences AAAAGTTTT and AAAAGCTTTT are labeled in red, AATTGAATT and AATTGCAATT are in black and ATATGATAT ATATGCATAT are in blue.

Figure S5. Change in rotational inter-base pair parameters upon binding. Rotational parameters (tilt, roll, twist) for sequences AAAAGTTTT and AAAAGCTTTT are labeled in red, AATTGAATT and AATTGCAATT are in black and ATATGATAT ATATGCATAT are in blue.

Figure S6. Root mean square fluctuation (RMSF) per base pairs shows increased rigidity (decreased RMSF) upon binding for all six sequences. (**A**) AAAAGTTTT, (**B**) AATTGAATT, (**C**) ATATGATAT, (**D**) AAAAGCTTTT, (**E**) AATTGCAATT, (**F**) ATATAGCATAT. The RMSF for the unbound structures are shown in black for all sequences. The nonpalindromic G•C sequences have two binding orientations (5' \rightarrow 3', red) (3' \rightarrow 5', blue). The palindromic (GpC) sequences only have one binding orientation (red). The target binding sites, G•C and GpC, are highlighted in gray. Integrated change in RMSF for each bound state are shown on the top right for each strand

Figure S7. Change in probability of minor groove width upon binding. (A) AAAAGTTTT, (B) AATTGAATT (C) ATATGATAT (D) AAAAGCTTTT (E) AATTGCAATT (F) ATATAGCATAT. The nonpalindromic G•C sequences have two binding orientations $(5' \rightarrow 3' \text{ and } 3' \rightarrow 5')$. The palindromic (GpC) sequences only have one binding orientation. The color gradient indicates increasing probability (blue to red) of width in Angstroms (Å). Surfaces were integrated to get a total change in width. Values are reported alongside figures.

Figure S8. Implementation of grid inhomogenous solvation theory (GIST). (**A**) The system is discretized in to equal volume voxels. From this, density of the solvent (g_0), solute-water enthalpy ($E_k^{s,w}$), water-water enthalpy ($E_k^{w,w}$), translations entropy (TS_k^{trans}) and orientational entropy (TS_k^{orient}) are reported per voxel. (**B**, **C**, **D**) Using the reported solvent density, the energetic calculations can be restricted to the structured waters near the DNA duplex. (**E**, **F**) The solute-water and water-water enthalpy terms are summed to get total enthalpy ($E_{total} = E^{s,w} + E^{w,w}$) and the translational and orientational entropy terms are summed to get total entropy ($TS_{total} = TS^{trans} + TS^{orient}$). (**G**) Subtracting the total entropy map from the total enthalpy map results an isodensity of free energy ($\Delta G = E_{total} - TS_{total}$). (**C-G**) The isosurfaces can be visualized in order to diagnose solvation hotspots. (**H**) A binary density map is created to represent the volume of water displaced by DB2277. (**I**, **J**) The binary map is multiplied the total entropy isodensity and the total enthalpy isodensity. (**K**, **L**) This produces maps of the enthalpy and entropy of the water displaced by DB2277 (E_{totaal}^{Disp} , respectively). (**M**) The entropy of the expelled water can be subtracted from the enthalpy of the expelled water to determine the free energy of the displaced waters $\Delta G_{Disp} = E_{total}^{Disp} - TS_{total}^{Disp}$.

 Table S4.
 Thermodynamic data for GIST analysis of the waters displaced from the minor groove.

	Enthalpy (ΔE) (kcal/mol)	Entropy (T∆S) (kcal/mol)	Free Energy (∆G) (kcal/mol)
AAAAGTTTT			
Displaced Water (5'—>3')	-10.13 ± 0.0003	$-1.04 \pm 3.46 \text{e-} 05$	-9.09 ± 0.0003
Displaced Water (3'—>5')	-10.26 ± 0.0003	$-1.08 \pm 3.58 \text{e-}05$	-9.18 ± 0.0003
AATTGAATT			
Displaced Water (5'—>3')	-6.14 ± 0.0002	$-0.66 \pm 2.24 e-05$	-5.45 ± 0.0002
Displaced Water (3'—>5')	-6.57 ± 0.0002	$-0.71 \pm 2.40 e-05$	-5.86 ± 0.0002
ATATGATAT (5'—>3')			
Displaced Water (5'—>3')	-3.50 ± 0.0001	$-0.30 \pm 1.21 \text{e-}05$	-3.20 ± 0.0001
Displaced Water (3'—>5')	-3.33 ± 0.0001	-0.29 ±1.17e-05	-3.04 ± 0.0001
AAAAGCTTTT			
Displaced Water	-6.24 ± 0.0002	-0.57 ±2.17e-05	-5.67 ± 0.0002
AATTGCAATT			
Displaced Water	-3.97 ± 0.0002	$-0.56 \pm 2.00e-05$	-3.41 ± 0.0002
ATATGCATAT			
Displaced Water	-2.83 ± 0.0001	$\textbf{-0.25} \pm \textbf{9.66e-06}$	-2.59 ± 0.0001

Figure S9. Curvilinear helicoidal coordinates system of Canion (R) radial distance in Å (A), angle from reference point (dotted line) which tracks the helical twist of the nucleic acid, and (D) longitudinal distance in Å along the base pair sequence.

Figure S10. Change in distribution of positive ions upon binding. (**A**) Ion distribution in the free and bound states in the angular dimension (**A**). (**B**) Ion distribution in the free and bound states in the radial distance dimension (**R**). Ion distribution in the longitudinal distance dimension (**D**). (**A**,**C**,**B**) The free structures are shown as black lines. The nonpalindromic G•C sequences have two binding orientations (5'→3', red) (3'→5', blue). The palindromic (GpC) sequences only have one binding orientation (red). Integrated change in molarity is shown on each plot. (**D**) Integrated change in molarity in the minor groove (33° < **A** < 147°) plotted against effective Δ G. (**F**) Integrated change in molarity in the duplex (**R** < 10.25 Å) plotted against effective Δ G.

Figure S11. DB2277 contacts the DNA via direct hydrogen bonds and water mediated contacts in the nonpalindromic sequences. Contact with persistence > 15% are drawn between the DB2277 and the DNA bases or backbone where the hydrogen bond is formed. Symmetric hydrogen bonds, like those formed by the amidines, are resented one hydrogen bond from that site. (A-F) In sequence AAAAGTTTT, DB2277 forms persistent contacts to three base pairs of the sequence with amidine-1 and the core azabenzimidiazole in both the 5' \rightarrow 3' (A-C) and 3' \rightarrow 5' (D-F) orientations. (G-L) Contacts between DB2277 and AATTGAATT are less numerous but several water-mediated contacts can be seen at amidine-1 and amindine-2. (M-R) The persistent contacts in the ATATGATAT sequence are highly similar to those of the AATTGAATT sequence. Water mediated contacts visualized as isodensity (isovalues blue mesh: -0.009, blue surface: -0.02) in panels B, E, H, K, N, and Q and as red dots in panels C, F, I, L, O, and R.

Figure S12. DB2277 contacts the DNA via direct hydrogen bonds and water mediated contacts in the palindromic sequences. Contact with persistence > 15% are drawn between the DB2277 and the DNA bases or backbone where the hydrogen bond is formed. Symmetric hydrogen bonds, like those formed by the amidines, are resented one hydrogen bond from that site. (**A-C**) In sequence AAAAGCTTTT, DB2277 forms persistent contacts to three base pairs of the sequence with amidine-1, the core azabenzimidiazole and amidine-2. (**D-F**) To optimize binding, DB2277 shifts one step upstream in the AATTGCAATT sequence and does not make contacts with the target guanine. (**G-I**) The persistent contacts in the ATATGCATAT sequence are highly similar to those of the AAAAGCTTTT sequence. Water mediated contacts visualized as isodensity (isovalues blue mesh: -0.009, blue surface: -0.02) in panels **B**, **E**, and **H** and as red dots in panels **C**, **F**, and **I**.

	Acceptor Residue	Residue Number	Acceptor	Donor Residue	Residue Number	Donor	Donor Hydrogen	Persistence
AAAAGTTTT								
(5'—>3')								
	DT	22	O2	DB1	27	N4/N5	H9/H10/H11	0.9183
	DB1	27	N1	DG	7	N2	H22	0.8930
	DT	21	02	DB1	27	N2	НЗ	0.5227
	DG	7	N3	DB1	27	N2	H3	0.3569
AAAAGTTTT (3'—>5')								
	DB1	27	N1	DG	7	N2	H22	0.8767
	DT	9	02	DB1	27	N4/N5	H8/H9/H10/H11	0.7175
	DC	20	02	DB1	27	N2	НЗ	0.5194
	DT	8	O2	DB1	27	N2	H3	0.3206
AATTGAATT (5'—>3')								
	DB1	27	N1	DG	7	N2	H22	0.8682
	DA	22	N3	DB1	27	N4/N5	H8/H10/H11	0.8312
	DG	7	N3	DB1	27	N2	НЗ	0.6869
AATTGAATT (3'—>5')								
	DB1	27	N1	DG	7	N2	H22	0.8941
	DA	9	N3	DB1	27	N4/N5	H8/H9/H10/H11	0.7905
	DC	20	02	DB1	27	N2	H3	0.7208
ATATGATAT (5'—>3')								
	DT	22	O2	DB1	27	N4/N5	H8/H9/H10	0.9711
	DB1	27	N1	DG	7	N2	H22	0.9539
	DG	7	N3	DB1	27	N2	H3	0.7112
ATATGATAT (3'—>5')								
	DT	9	02	DB1	27	N4/N5	H8/H9/H10/H11	0.9081
	DB1	27	N1	DG	7	N2	H22	0.8444
	DC	20	O2	DB1	27	N2	H3	0.7806

Table S5. Contact persistence between DB2277 and DNA sequences for the nonpalindromic sequences.

Table S6. Contact persistence between DB2277 and DNA sequences for the palindromic sequences.

	Acceptor Residue	Residue Number	Acceptor	Donor Residue	Residue Number	Donor	Donor Hydrogen	Persistence
AAAAGCTTTT								
	DB1	29	N1	DG	7	N2	H22	0.9270
	DT	24	O2	DB1	29	N4/N5	H8/H9/H10/H11	0.9255
	DT	23	O2	DB1	29	N2	H3	0.4822
	DT	23	O1P	DB1	29	N6/N7	H18/H19/H20/H21	0.3847
	DG	7	N3	DB1	29	N2	H3	0.3647
	DC	22	O3'	DB1	29	N6/N7	H18/H19/H20/H21	0.2289
AATTGCAATT								
	DT	25	O2	DB1	29	N4/N5	H8/H9/H10/H11	0.9490
	DT	6	O2	DB1	29	N2	H3	0.8364
	DC	8	O2	DB1	29	N6/N7	H18/H19/H20/H21	0.1762
ATATGCATAT								
	DT	24	O2	DB1	29	N4/N5	H8/H9/H10/H11	0.9797
	DB1	29	N1	DG	7	N2	H22	0.9682
	DG	7	N3	DB1	29	N2	H3	0.6821
	DA	23	O1P	DB1	29	N6/N7	H18/H19/H20/H21	0.3996
	DC	22	O3'	DB1	29	N6/N7	H18/H19/H20/H21	0.1490

Figure S14 Restricted rotation of amidine-1 due to hydrogen bond formation with the floor of the minor groove. It is interesting to note that the phenyl group of the ATATGCATAT sequence is rotated 180° relative to other conformations. In this wide minor groove, the planar conformation of DB2277 is altered to better accommodate hydrogen bond formation.

Figure S15 Restricted bond rotation on either side of the ether functional group is due to electrostatic repulsion between O1 and N1. See Table S1 for further details.

Figure S16 Rotational freedom of the phenyl group relative to the methyl-ether bond. In the non-palindromic sequences, the minor groove collapses around the small molecule and the amidine group of amdine-2 forms numerous water-mediated contacts. This restricts the rotation of the phenyl group to preferred orientations (**A**, **B**, **C**). Amidine-2 in the palindromic sequences is more dynamic as it is more solvent exposed compared to in the non-palindromic sequences. The minor groove is unable to collapse around the small molecule and it forms less persistent direct and indirect bonds. This results in greater rotational freedom (**D**, **E**, **F**).

Figure S17 Rotational angles of aminide-2 show influence of water mediate contacts on small molecule rigidity. In the non-palindromic sequences, the minor groove collapses around the small molecule, aiding in contact formation and decreases the rotational freedom (**A**, **B**, **C**). In the palindromic sequences, the minor groove does not collapse around the small molecule and the contact formation is more transient resulting in greater rotational freedom (**D**, **E**, **F**).

References

- 1. C. O. Silva, E. C. da Silva and M. A. C. Nascimento, *The Journal of Physical Chemistry A*, 2000, **104**, 2402-2409.
- 2. R. Cammi and J. Tomasi, J Comput Chem, 1995, 16, 1449-1458.
- 3. M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chemical Physics Letters, 1996, 255, 327-335.