Electronic Supplementary Information (ESI)

Charge transfer at the nanoscale and the role of the out-of-plane vibrations in the selection rules of surface-enhanced Raman scattering

D. Aranda, S. Valdivia, F. Avila, J. Soto, J. C. Otero* and I. López-Tocón*

Universidad de Málaga, Andalucía Tech, Facultad de Ciencias, Departamento de Química Física, Unidad Asociada CSIC, 29071-Málaga, España. E-mail: tocon@uma.es; jc_otero@uma.es

Liqu	id	Solution		
IR	Ra	Ra	B3LYP/	
			6-31+G*	
v ^a	ν	ν	ν^{b}	Asignment ^c
3085	-	-	3120	2;v(CH),A ₁
3068	3068	3086	3111	20a;v(CH),B ₂
3056	3056	3074	3103	7a;v(CH),A1
-	-	-	3095	13;v(CH),B ₂
1570	1568	1574	1570	8a;v _{ring} ,A1
1563	1566	-	1565	$8b;v_{ring},B_2$
1446	1448	1458	1443	19b;δ(CH),A ₁
1415	-	-	1404	19a;δ(CH),B ₂
1283	1287	1293	1281	δ(CH),B ₂
1159	1162	1186	1167	$14;v_{ring},A_1$
-	-	1166	-	16b+11,A ₁
-	1118	1124	1144	δ (CH),A ₁
1061	1063	1069	1064	v_{ring}, A_1
1058	-	-	1055	v_{ring}, B_2
-	-	-	1022	$12;\delta_{ring},B_2$
-	-	-	1006	5;γ(CH),A ₂
-	-	-	970	17b;γ(CH),B ₁
963	965	975	983	$1;v_{ring},A_1$
-	-	-	934	10b;γ(CH),A ₂
760	756	758	754	11;γ(CH),B ₁
-	-	-	753	$4;\tau_{ring},A_2$
664	666	668	659	$6a;\delta_{ring},A_1$
629	626	634	612	$6b;\delta_{ring},B_2$
372	375	375	372	$16b; \tau_{ring}, B_1$
-	367	-	370	16a; tring, A2

Table S1 Assignment of the infrared and Raman spectra (cm⁻¹) of pure liquid and 1M aqueous solution of pyridazine and the scaled B3LYP/6-31+G* calculated wavenumbers.

^aFrom A.R. Bérces, P.G. Szalay, I. Magdó, G. Fogarasi, and G. Pongor, *J. Phys. Chem.* 1993, **97**, 1356-1363. ^bCalculated in-plane and out-of-plane wavenumbers scaled by 0.97 and 0.99, respectively. ^cWilson's nomenclature from G. Varsanyi, Vibrational spectra of benzene derivatives, Academic Press, New York, 1969. v:stretching, δ :in-plane deformation, γ :out-of-plane deformation and τ :torsion.

Exp.	B3LYP/	SE	_			
Raman	6-31+G*	0.00	-0.25	-0.50	-0.75	
ν^{a}	ν^{b}	ν	ν	ν	ν	Assignment ^e
-	3120	-	-	-	-	2;v(CH),A1
3086	3111	-	-	-	-	20a;v(CH),B2
3074	3103	3064	3064	3062	3062	7a;v(CH),A1
-	3095	-	-	-	-	13;v(CH),B ₂
1574	1570	1576	1574	1574	1574	8a;v _{ring} ,A ₁
1566 ^c	1565	-	-	-	-	$8b;v_{ring},B_2$
1458	1443	1456	1454	1454	1452	19b;δ(CH),A ₁
1413 ^d	1404	-	-	-	-	19a;δ(CH),B ₂
1293	1281	-	1293	1289	1289	δ(CH),B ₂
1186	1167	1207	1207	1209	1209	$14;v_{ring},A_1$
1166	-	1170	1166	1166	1166	16b+11,A ₁
1124	1144	1152	1154	sh	-	δ(CH),A1
1069	1064	1069	1069	1067	1063	ν_{ring}, A_1
1049 ^d	1055	-	-	-	-	ν_{ring}, B_2
1014 ^d	1022	-	-	-	-	12;8 _{ring} ,B ₂
-	1006	-	-	-	-	5;y(CH),A ₂
987 ^d	970	-	1001	997	999	17b;γ(CH),B ₁
975	983	981	979	975	971	1;vring,A1
943 ^d	934	-	941	943	-	10b;γ(CH),A ₂
758	754	776	774	774	760	11;γ(CH),B ₁
729 ^d	753	722	746	744	740	$4;\tau_{ring},A_2$
668	659	670	670	670	670	6a;δ _{ring} ,A ₁
634	612	644	642	640	640	6b;δ _{ring} ,B ₂
375	372	389	387	385	379	$16b; \tau_{ring}, B_1$
367°	370	-	-	-	-	16a; τ_{ring} ,A ₂

Table S2 Assignment of the SERS spectra (cm⁻¹) of pyridazine recorded at different electrode potentials correlated with the experimental (Raman) and the B3LYP/6-31+G* scaled wavenumbers.

^a1M aqueous solution (this work). ^bCalculated wavenumbers for in-plane and out-of-plane fundamentals scaled by 0.97 and 0.99, respectively. ^cPure liquid (this work). ^dPure liquid from. J. Vázquez, J.J. López González, F. Márquez and J. E. Boggs, *J. Raman Spectrosc*. 1998, **29** 547-559. ^eWilson's nomenclature from G. Varsanyi, Vibrational spectra of benzene derivatives, Academic Press, New York, 1969. v:stretching, δ :in-plane deformation, γ :out-of-plane deformation and τ :torsion.

		B3LYP/					
		6-31+G*		B3	BLYP/LanL2DZ		
		Pdz	Pdz	$Pdz-Ag_2(C_{2v})$	$Pdz-Ag_2(C_s)$	$Pdz-Ag^+(C_{2v})$	$Pdz-Ag^{+}(C_s)$
Symmetry ^a	Assignment ^b	ν^{c}	ν	Δν	Δν	Δv	Δv
A_1	2;v(CH)	3120	3250	6	8	19	20
	7a;v(CH)	3103	3224	9	12	26	27
	$8a;v_{ring}$	1570	1596	3	4	10	6
	19b;δ(CH)	1443	1455	4	8	9	11
	$14;v_{ring}$	1167	1198	12	14	60	48
	δ(CH)	1144	1161	21	21	43	41
	ν_{ring}	1064	1067	0	5	-4	-4
	$1; v_{ring}$	975	962	-3	10	-20	-3
	$6a;\delta_{ring}$	668	675	6	6	14	13
B2	20a:v(CH)	3111	3236	8	10	23	24
-	13:v(CH)	3095	3214	9	12	29	29
	8b:V _{ring}	1565	1576	4	10	7	9
	19a;δ(CH)	1404	1425	7	7	18	16
	δ(CH)	1281	1303	4	8	5	12
	v_{ring}	1055	1080	2	8	10	17
	$12;\delta_{ring}$	1022	1036	14	22	30	45
	6b;δ _{ring}	612	629	3	13	9	16
A 2	5:y(CH)	1006	1041	4	3	15	14
-	10b;y(CH)	934	940	11	8	28	20
	4:Tring	753	774	-1	-5	-11	-16
	$16a; \tau_{ring}$	370	380	6	16	9	16
\mathbf{B}_1	17b;y(CH)	970	986	10	9	28	23
-	11;y(CH)	754	778	5	7	18	20
	16b; t _{ring}	372	374	7	8	23	27

Table S3 B3LYP/LanL2DZ calculated wavenumber shifts ($\Delta v/cm^{-1}$) of the vibrations of pyridazine (Pdz) in the Pdz-Ag₂ and Pdz-Ag⁺ complexes with C_{2v} and C_s symmetry.

 ${}^{a}C_{2v}$ symmetry. ${}^{b}Wilson's$ nomenclature from G. Varsanyi, Vibrational spectra of benzene derivatives, Academic Press, New York, 1969. v:stretching, δ :in-plane deformation, γ :out-of-plane deformation and τ :torsion. ${}^{c}Calculated$ wavenumbers for in-plane and out-of-plane fundamentals scaled by 0.97 and 0.99, respectively.

Table S4 M06-HF/LanL2DZ vertical excitation energies ($\Delta E/eV$, symmetries of the isolated molecules) for the two first CT electronic transitions of the corresponding molecule-Ag₂ complex.

	Vertical Energies / eV										
	Pyridine-Ag ₂	Pyrazine-Ag ₂	Pyridazine-Ag ₂								
$\Delta E (CT_0-S_0)$	3.29 (B ₁ ← A ₁)	2.90 (B _{3u} ← A _g)	2.61 (A₂ ← A ₁)								
$\Delta E (CT_1 - S_0)$	3.94 (A ₂ ← A ₁)	3.73 (Au←Ag)	3.12 (B ₁ ← A ₁)								

Table S5 M06-HF/LanL2DZ optimized structures of pyridazine (Pdz) and of Pdz-Ag₂ complexes in the ground electronic state (S_0 ;¹A₁) and the corresponding doublet states (D_0 and D_1) of Pdz⁻ and the singlet CT states (CT₀ and CT₁) of the complexes, respectively.

	F	dz (C2v)	Pdz	z-Ag ₂ ((C _{2v})	\mathbf{Pdz} - \mathbf{Ag}_2 (\mathbf{C}_s)				
Parameter ^a	S ₀	D_0	D_1	\mathbf{S}_0	CT_0	CT_1	S ₀	CT_0	CT_1		
Structure	4	4	\$	Ť	× × ×			Ż	*		
R 1	1.346	1.435	1.308	1.349	1.432	1.342	1.345	1.408	1.317		
R _{2/3}	1.344	1.360	1.399	1.336	1.354	1.361	1.338/1.348	1.367	1.344/1.375		
R 4/5	1.408	1.394	1.446	1.412	1.386	1.464	1.410/1.410	1.376	1.468/1.434		
R 6	1.391	1.448	1.376	1.389	1.454	1.364	1.390	1.456	1.363		
R 7/8	1.081	1.088	1.079	1.081	1.082	1.075	1.081/1.080	1.082	1.076/1.075		
R 9/10	1.082	1.083	1.086	1.082	1.079	1.082	1.081/1.082	1.079	1.082/1.082		
Q 1/2	119.9	117.4	120.9	120.4	118.7	122.0	121.4/119.1	118.7	125.1/118.6		
Q (3/6	122.7	126.3	120.8	121.9	123.7	118.9	121.7/122.6	123.8	118.9/120.1		
Q1 4/5	117.3	116.3	118.2	117.7	117.5	119.1	117.4/117.7	117.4	116.4/120.8		
β1/2	115.1	113.6	115.5	115.6	115.0	117.4	115.7/115.1	114.8	117.7/115.9		
β3/4	120.5	121.1	120.1	120.3	120.6	119.3	120.3/120.2	120.8	120.4/118.6		

^aBond lengths in Angstroms and angles in degrees. See Figures for symbols:

		$S_0(^1A_1)$	$S_0(^1A_1)$	CT_0	$(^{1}A_{2})$	$CT_1($	B ₁)
Symmetry	Assignment ^a	B3LYP/6-31+G*b	M06-HF/LanL2DZ	M06-HF/	LanL2DZ	M06-HF/L	anL2DZ
		v/ cm ⁻¹	v/ cm ⁻¹	$\nu/ \text{ cm}^{-1}$	${\mathsf D_{ij}}^{\mathrm c}$	v/ cm⁻¹	D_{ij}^{c}
A_1	2;v(CH)	3120	3311	3330	-0.99	3298	-0.88
	7a;v(CH)	3103	3286	3266	-0.99	3367	-0.88
	8a;v _{ring}	1570	1689	1573	-0.82	1684	0.98
	19b;δ(CH)	1443	1507	1513	0.75	1447	0.99
	$14;v_{ring}$	1167	1224	1333	-0.69	1413	0.80
	δ(CH)	1144	1209	1185	-0.74	1195	-0.83
	ν_{ring}	1064	1111	1015	-0.76	1081	0.84
	$1;v_{ring}$	983	1016	920	-0.73	981	0.89
	$6a;\delta_{ring}$	659	691	701	-0.98	647	1.00
\mathbf{B}_2	20a;v(CH)	3111	3296	3314	-0.93	3355	0.75
	13;v(CH)	3095	3282	3263	0.93	3228	0.70
	$8b;v_{ring}$	1565	1684	1541	0.68	4383	-0.88
	19a;δ(CH)	1404	1481	1405	-0.65	1417	0.96
	δ(CH)	1281	1348	1089	0.52	1329	-0.94
	ν_{ring}	1055	1119	1176	0.76	974	0.98
	$12;\delta_{ring}$	1022	1072	1066	0.99	1073	1.00
	$6b;\delta_{ring}$	612	639	582	-1.00	648	-0.99
A_2	5;γ(CH)	1006	1091	1044	-0.79	1038	0.91
	10b;γ(CH)	934	988	841	-0.79	668	-0.74
	$4;\tau_{ring}$	753	798	689	-0.98	696	0.81
	16a; τ_{ring}	370	413	259	0.98	447	1.00
\mathbf{B}_1	17b;γ(CH)	970	1039	1032	0.99	794	0.76
	11;γ(CH)	754	814	744	-0.96	664	-0.72
	$16b; \tau_{ring}$	372	418	421	-0.98	133	0.70

Table S6 Assignment of the M06-HF/LanL2DZ calculated wavenumbers of the Pdz-Ag₂ complex (C_{2v}) in the S_0 ;¹A₁, CT_0 ;¹A₂ and CT_1 ;¹B₁ electronic states.

^aWilson's nomenclature from G. Varsanyi, Vibrational spectra of benzene derivatives, Academic Press, New York, 1969. v:stretching, δ :in-plane deformation, γ :out-of-plane deformation and τ :torsion. ^bB3LYP/6-31+G* wavenumbers for in-plane and out-of-plane fundamentals scaled by 0.97 and 0.99, respectively. ^cBiggest element of the Duschinski matrix.

ie vers er uneer	<i>.</i>															
Electronic state	: S ₀	\mathbf{S}_0		\mathbf{D}_0		D_1	S_0		D_0		D_1	\mathbf{S}_{0}		D_0		D_1
Method:	B3LYP	B3LYP	UI	B3LYP	UE	3LYP	RHF	τ	JHF	τ	JHF	CASSCF ^a	CA	SSCF ^a	CA	SSCF ^a
Basis set:	6-31+G*	6-31+G*	6-	31+G*	6	31+G*	6-31+G*	6-3	61+G*	6-3	81+G*	6-31+G*	6-3	81+G*	6-3	31+G*
Asignment ^b	ν^{c}	ν	ν	${\rm D_{ij}}^d$	ν	${\rm D_{ij}}^d$	ν	ν	\mathbf{D}_{ij}^{d}	ν	${\rm D_{ij}}^d$	ν	ν	${\rm D_{ij}}^d$	ν	${\rm D_{ij}}^{\rm d}$
5,γ(CH),A ₂	1006	1016	578	-0.73	885	-0.87	1141	677	0.67	1028	-0.88	1083	714	-0.68	977	0.91
17b,γ(CH),B ₁	970	980	907	-0.94	443	0.80	1095	1030	-0.91	448	-0.72	1031	995	-0.92	516	0.76
10b,γ(CH),A ₂	934	943	943	0.76	452	0.75	1048	1055	0.73	416	-0.89	984	1020	-0.71	512	-0.91
11,γ(CH),B ₁	754	762	587	0.87	668	-0.85	850	667	0.80	774	-0.82	811	664	-0.91	746	-0.79
$4, \tau_{ring}, A_2$	753	761	664	0.93	666	-0.98	833	722	-0.89	727	-0.98	779	692	0.88	699	0.97
$16b, \tau_{ring}, B_1$	372	376	383	-0.92	298i	0.91	446	439	0.96	267i	0.76	440	440	-0.97	72i	0.86
$16a, \tau_{ring}, A_2$	370	374	211	0.99	411	-0.89	433	290	-0.92	487	-0.99	423	304	0.94	475	1.01

Table S7 Vibrational wavenumbers (cm⁻¹) of the out-of-plane fundamentals of pyridazine (Pdz) in the S_0 ; 1A_1 , D_0 ; 2A_2 and D_1 ; 2B_1 electronic states calculated at several levels of theory.

^a6x6 and 7x6 CASSCF calculations for S₀ and D_i, respectively. ^bWilson's nomenclature from G. Varsanyi, Vibrational spectra of benzene derivatives, Academic Press, New York, 1969. γ :out-of-plane deformation and τ :torsion. ^cScaled B3LYP/6-31+G* wavenumbers by 0.99. ^dBiggest element of the Duschinski matrix.