Electronic Supplementary Information for PCCP article:

3D Structure of the Electric Double Layer of Ionic Liquid-Alcohol Mixtures at the Electrochemical Interface

José M. Otero-Mato, ${ }^{1}$ Hadrián Montes-Campos, ${ }^{1}$ Oscar Cabeza, ${ }^{2}$ Diddo Diddens, ${ }^{3}$ Alina Ciach, ${ }^{4}$ Luis J. Gallego, ${ }^{1}$ and Luis M. Varela ${ }^{1,}$ a)
${ }^{1)}$ Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n E-15782, Santiago de Compostela, Spain
${ }^{2)}$ Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n E-15008,
A Coruña, Spain
${ }^{3)}$ Helmholtz-Institute Münster (HI MS), Ionics in Energy Storage, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
${ }^{4)}$ Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland

[^0]
I. IONIC POSITIONS FLUCTUATIONS: THEORETICAL DESCRIPTION

Let's suppose a situation where the ions are forming a two-dimensional triangular lattice in an ionic layer close to the electrodes. In a first approximation, we can calculate the probability of finding a given ion out of its equilibrium position at $\Delta \vec{r}=\left(\epsilon_{x}, \epsilon_{y}\right)$ (see Fig. A). This probability will be governed by the Boltzmann distribution. In our problem, the electrostatic potential energy plays a dominant role, so we can approximate this energy for the considered ion by the contributions of its first neighbours:

$$
\begin{gather*}
E_{p}=\frac{q^{2}}{4 \pi \epsilon_{r}}\left(\frac{1}{\sqrt{\epsilon_{x}^{2}+\left(\epsilon_{y}-a\right)^{2}}}+\frac{1}{\sqrt{\epsilon_{x}^{2}+\left(\epsilon_{y}+a\right)^{2}}}+\right. \\
\frac{1}{\sqrt{\left(\epsilon_{x}-\frac{\sqrt{3}}{2} a\right)^{2}+\left(\epsilon_{y}-\frac{1}{2} a\right)^{2}}}+\frac{1}{\sqrt{\left(\epsilon_{x}-\frac{\sqrt{3}}{2} a\right)^{2}+\left(\epsilon_{y}+\frac{1}{2} a\right)^{2}}} \\
\left.\frac{1}{\sqrt{\left(\epsilon_{x}+\frac{\sqrt{3}}{2} a\right)^{2}+\left(\epsilon_{y}-\frac{1}{2} a\right)^{2}}}+\frac{1}{\sqrt{\left(\epsilon_{x}+\frac{\sqrt{3}}{2} a\right)^{2}+\left(\epsilon_{y}+\frac{1}{2} a\right)^{2}}}\right), \tag{1}
\end{gather*}
$$

where q is the charge of the ions, ϵ_{r} the electric permitivity of the medium and a the lattice parameter of the model. It is straightforward to see that, since $(0,0)$ is a minimum of the potential, this expression can be approximated to the lowest order by:

$$
\begin{equation*}
E_{p} \approx \frac{3 q^{2}}{2 \pi \epsilon a}+\frac{9 q^{2}\left(\epsilon_{x}^{2}+\epsilon_{y}^{2}\right)}{8 \pi \epsilon a^{3}}+O\left(\epsilon_{x}^{4}, \epsilon_{y}^{4}\right) \tag{2}
\end{equation*}
$$

Using this approximation of the energy together with the Boltzmann distribution, the probability of finding an ion out of its equilibrium position can be approximated by:

$$
\begin{equation*}
p\left(\epsilon_{x}, \epsilon_{y}\right)=\frac{1}{Z} e^{-\frac{E_{p}}{k_{B} T}} \approx \frac{1}{Z} e^{-\frac{q^{2}}{k_{B} T \pi \epsilon a}} e^{-\frac{3 q^{2}\left(\epsilon_{x}^{2}+\epsilon_{y}^{2}\right)}{4 \pi \epsilon \epsilon^{3} k_{B} T}}, \tag{3}
\end{equation*}
$$

where Z is the partition function, k_{B} the Boltzmann constant and T the temperature. As it can be seen, the probability of fluctuation in the positions of the ions is described by a Gaussian distribution function with the standard deviation

$$
\begin{equation*}
s_{p}=\frac{a^{2}}{q} \sqrt{\frac{2 \pi \epsilon k_{B} T}{3 a}} \propto \frac{\sqrt{T \epsilon}}{\sigma} \tag{4}
\end{equation*}
$$

where $\sigma=q / a^{2}$ is the surface charge density.

FIG. A: Scheme of the considered model for the calculation of the dispersion in the ionic position. The dots represents the ions positions, being a the lattice parameter. The considered ions for the energy calculation are those in blue.

[^0]: ${ }^{\text {a) }}$ Electronic mail: luismiguel.varela@usc.es

