Supporting Information for

Rotational spectra and theoretical study of tetramers and trimers of 2-fluoroethanol: dramatic intermolecular compensation for intramolecular instability

Nathan A. Seifert,^a Javix Thomas,^a Wolfgang Jäger,^a Yunjie Xu*^a

^a Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2

Contents:

1. Figure S1 Conformations of the FE monomer	S2
2. Table S1-S3 Transition frequencies of the observed FE trimers and tetramer	S3-S5
3. Table S4 QTAIM analyses the FE tetramer	S6
4. Figure S2 Experimental and simulated spectra of the assigned (FE) _{3,4}	
3. Figure S3 Connection of the FE tetramers I, II and III	S8
4. Table S5 Geometries for predicted tetramer isomers I-V	S9-S13
5. Completed Abbreviated References	S14

Figure S1. Newman projections of the 9 FE monomer conformations. The capital letters are for τ (FCCO) and the lower case for τ (CCOH).

J'	Ka'	Kc'	J''	Ka"	Kc"	v _{EXP} / MHz	$\Delta \nu^{[a]}/MHz$
4	2	2	3	1	2	2970.6434	-0.006
3	3	0	2	2	0	3074.3290	0.0019
3	3	1	2	2	1	3078.0498	0.004
4	2	3	3	1	3	3149.4297	-0.0039
5	1	4	4	0	4	3309.2560	-0.0032
5	2	3	4	1	3	3500.7274	-0.0048
4	3	1	3	2	1	3606.8600	0.0026
4	3	2	3	2	2	3624.6906	-0.0051
5	2	4	4	1	4	3765.9605	-0.0037
6	1	5	5	0	5	3997.3550	0.0034
6	2	4	5	1	4	4052.6283	0.0028
5	3	2	4	2	2	4128.2707	0.0044
5	3	3	4	2	3	4178.3964	-0.0033
4	4	0	3	3	0	4198.5442	-0.0036
4	4	1	3	3	1	4198.7752	-0.0114
6	2	5	5	1	5	4400.9335	-0.0076
7	2	5	6	1	5	4632.7532	0.0197
6	3	3	5	2	3	4635.9733	0.0017
7	1	6	6	0	6	4715.9862	0.0023
5	4	1	4	3	1	4738.1464	0.0106
5	4	2	4	3	2	4739.7763	0.0058
6	3	4	5	2	4	4742.1064	-0.004
7	3	4	6	2	4	5132.8425	-0.0025
8	2	6	7	1	6	5245.7279	-0.0088
6	4	3	5	3	3	5281.3340	0.0066
6	4	2	5	3	2	5274.9923	0.0091
5	5	1	4	4	1	5321.0716	-0.0019
5	5	0	4	4	0	5321.0716	0.0107
8	3	5	7	2	5	5627.8281	-0.0021
7	4	3	6	3	3	5806.1710	-0.0056
7	4	4	6	3	4	5824.4187	0.0006
6	5	2	5	4	2	5861.6390	0.0029
6	5	1	5	4	1	5861.5164	-0.0078
8	7	2	7	6	2	8106.4378	-0.0005
8	7	1	7	6	1	8106.4378	-0.0002

Table S1. Measured transition frequencies of the $(G+g-)_4$, I FE tetramer.

[a] $\Delta v = v_{CALC.} - v_{EXP.}$

ľ	K'	ייד	K"	VEVD / MHZ	$\Delta v^{[a]}$
5	К	3	IX.	VEAP / IVITIZ	MHz
2	0	1	0	2670.9503	0.0131
2	1	1	1	2670.9503	0.0092
3	0	2	0	4006.4063	0.0146
3	1	2	1	4006.4063	0.0086
3	2	2	2	4006.4063	-0.0093
4	0	3	0	5341.8379	0.0093
4	1	3	1	5341.8379	0.0014
4	2	3	2	5341.8379	-0.0225
5	0	4	0	6677.2380	-0.0025
5	1	4	1	6677.2380	-0.0124
6	0	5	0	8012.6150	-0.0040
6	1	5	1	8012.6150	-0.0159
6	2	5	2	8012.6700	0.0033
8	0	7	0	10683.2377	0.0033
8	1	7	1	10683.2529	0.0025
8	2	7	2	10683.2971	-0.0010
9	0	8	0	12018.4452	-0.0007
9	1	8	1	12018.4649	0.0011
9	2	8	2	12018.5139	-0.0036
9	4	8	4	12018.7333	0.0010

Table S2. Measured transition frequencies of the $(G-g+)_3$, **II** TFE trimer.

[a] $\Delta v = v_{CALC.} - v_{EXP.}$

J'	Ka'	Kc'	J"	Ka"	Kc"	v _{EXP} / MHz	$\Delta \nu^{[a]}/MHz$
2	2	0	1	1	0	2806.4780	0.0014
3	1	2	2	0	2	3733.9177	0.0095
3	2	1	2	1	1	3849.4306	-0.0009
3	2	2	2	1	2	4046.9898	-0.0045
3	3	0	2	2	0	4360.0794	-0.0010
3	3	1	2	2	1	4401.6667	-0.0002
4	2	2	3	1	2	4975.1995	-0.0107
4	1	3	3	0	3	5056.6772	-0.0020
4	2	3	3	1	3	5255.5372	0.0136
4	3	1	3	2	1	5337.7093	0.0021
4	3	2	3	2	2	5486.8098	-0.0075
4	4	0	3	3	0	5922.3186	0.0064
4	4	1	3	3	1	5933.9228	-0.0017
6	5	1	5	4	1	8485.7231	-0.0083
7	3	4	6	2	4	8651.5528	-0.0004
7	4	3	6	3	3	8845.3210	0.0016
6	6	0	5	5	0	9023.7635	-0.0020
6	6	1	5	5	1	9024.2747	0.0036
7	4	4	6	3	4	9185.3192	-0.0016
7	5	2	6	4	2	9465.7708	0.0043

Table S3. Measured transition frequencies of $(G-g+)_2(+-g-)$, **III** TFE trimer.

[a] $\Delta v = v_{CALC.} - v_{EXP.}$

	(FE)4 I		(F	E)4 II	(FE) ₄ III		
Bond	EBCP	$\nabla^2 \rho$	$E_{ m BCP}$	$\nabla^2 \rho$	$E_{ m BCP}$	$\nabla^2 \rho$	
$\text{C-H} \cdots \text{F-C}$	6.47	0.0349	6.47	0.0349	4.80	0.0256	
С-Н … F-С	6.47	0.0349	6.47	0.0349	4.80	0.0256	
С-Н … F-С	5.17	0.0275	5.17	0.0275	7.72	0.0414	
С-Н … F-С	5.17	0.0275	5.17	0.0275	7.72	0.0414	
C-H … F-C	4.42	0.0246	4.42	0.0246	4.07	0.0225	
C-H ··· F-C	4.42	0.0246	4.42	0.0246	4.07	0.0225	
C-H ··· F-C	5.48	0.0286	5.48	0.0286	5.39	0.0028	
C-H ··· F-C	5.48	0.0286	5.48	0.0286	5.39	0.0028	
О-Н … Н-О	52.9	0.1148	52.9	0.1148	51.5	0.1174	
О-Н … Н-О	52.9	0.1148	52.9	0.1148	51.5	0.1174	
О-Н … Н-О	46.8	0.1157	46.8	0.1157	50.1	0.1141	
О-Н … Н-О	46.8	0.1157	46.8	0.1157	50.1	0.1141	
Sum	m 242.5			242.5		247.1	
	(F)	E)4 IV	(F	E)4 V			
Pond	Ence	∇^2	Ence	∇^2 o			
	8.46	0.0337	4.30	νρ 0.0214			
	8.46	0.0337	7.48	0.0306			
С-н … F-С	8 46	0.0337	9.21	0.0366			
С-Н … F-С	8.46	0.0337	3.82	0.0200			
С-Н … F-С	0.40	0.0557	5.82 7.04	0.0200			
С-Н … F-С			7.04	0.0207			
С-Н … F-С			1.74	0.0312			
С-Н …Н-С	10 5	0.1015	0.22	0.00204			
О-Н … Н-О	43.5	0.1247	47.3	0.127			
О-Н … Н-О	43.5	0.1247	40.4	0.122			
О-Н … Н-О	43.5	0.1247	48.1	0.13			
О-Н … Н-О	43.5	0.1247	43.3	0.119			
Sum		207.8		218.9			

Table S4. Interaction energies (in kJ mol⁻¹) and Laplacian curvature values for the bond critical points of the five lowest energy (FE)₄ isomers based on the QTAIM analysis.

Figure S2. The 2-6 GHz experimental chirped-pulse spectrum of 2-fluoroethanol (top) and predicted spectra of the dimers, trimers, and tetramer (colored spectra, bottom), with an inset showing a sequence of transitions assigned to the tetramer. For visual clarity, predicted spectra for all 3 trimers have been plotted together as a single entry. Transitions associated with the 2-fluoroethanol monomer are shown without predictions.

Figure S3. QTAIM diagrams for isomers **I**, **II** and **III** of the 2-fluoroethanol tetramer with emphasis on their structural interconnection. For isomer **I**, the enantiomeric form $(G+g-)_4$ is used instead of $(G-g+)_4$, as in Figure 1 and 2, in order to show its structural similarity to the (G+g+)-containing isomers **II** and **III**. C-H…F H-bond paths are shown in green, with the bond critical points (BCPs) shown as golden spheres. Red paths and translucent blue spheres indicating the O…HO bond paths and BCPs, respectively. Higher order cage and ring critical points are omitted for visual clarity. Note that g+ or g- dictates the cooperative O-H…O H-bond direction in clockwise (looking down) or counter clockwise fashion, respectively. The energy differences given below are based on the ΔE_0 energy values listed in Table I.

		Ι		
Atom	Х	Y	Z	
С	3.1479	-0.7879	-1.3511	
С	3.6207	-0.6373	0.0735	
Ο	1.7536	-0.6202	-1.4982	
Н	3.3908	-1.7995	-1.6869	
Н	3.6909	-0.0836	-1.9917	
Н	4.6804	-0.8900	0.1596	
Η	1.4902	0.3140	-1.3274	
F	3.4774	0.7001	0.4828	
Н	3.0256	-1.2468	0.7530	
С	-0.8645	-2.5711	0.1294	
С	-0.5891	-1.8258	1.4099	\square
0	-0.6399	-1.8032	-1.0404	
Н	-1.9188	-2.8520	0.1241	
Н	-0.2660	-3.4888	0.1056	
Н	-0.9201	-2.4086	2.2723	
Н	0.3075	-1.5567	-1.1258	
F	0.7980	-1.6196	1.5582	
Н	-1.0632	-0.8464	1.4157	
С	-3.1479	0.7879	-1.3511	
С	-3.6207	0.6373	0.0735	
0	-1.7536	0.6202	-1.4982	
H	-3.3908	1.7995	-1.6869	
H	-3.6909	0.0836	-1.9917	
H	-4.6804	0.8900	0.1596	
Н	-1.4902	-0.3140	-1.32/4	
F T	-3.4774	-0.7001	0.4828	
H	-3.0256	1.2468	0.7530	
C	0.8045	2.3/11	0.1294	
	0.3891	1.8238	1.4099	
0	0.0399	1.8032	-1.0404	
П U	1.7188	2.0020	0.1241	
п u	0.2000	2.4000 2 1096	0.1030	
п Ц	-0.3201	∠. 4 000 1 5567	2.2725 _1 1258	
Г Г	-0.3073	1.5507	-1.1230	
H	1 0632	0.8464	1 4157	
Н	1.0632	0.8464	1.413/	

 Table S5. Cartesian coordinates for the predicted B3LYP-D3/def2TZVP geometries of the FE tetramers I-V.

		Π		
Atom	Х	Y	Ζ	
С	2.878	1.297	-0.595	
С	4.002	0.299	-0.571	
Ο	1.767	0.736	-1.269	
Н	3.238	2.192	-1.120	
Н	2.614	1.581	0.427	
Н	4.912	0.754	-0.175	
Н	0.972	1.306	-1.146	
F	3.678	-0.783	0.263	
Н	4.188	-0.107	-1.566	
С	0.968	-2.460	0.109	
С	0.731	-1.766	1.427	
0	0.560	-1.696	-1.013	
Н	0.401	-3.393	0.082	
Н	2.033	-2.704	0.042	
Н	1.151	-0.761	1.437	
Н	1.129	-0.897	-1.092	
F	-0.651	-1.641	1.667	
Н	1.148	-2.351	2.250	
С	-1.132	2.561	0.173	
С	-0.846	1.742	1.407	
0	-0.631	1.980	-1.021	
Н	-0.663	3.542	0.270	
Н	-2.215	2.704	0.107	
Н	-1.185	0.714	1.302	
Н	-1.171	1.191	-1.253	
F	0.541	1.698	1.648	
Н	-1.312	2.195	2.285	
С	-3.008	-0.995	-1.437	
С	-3.469	-0.937	-0.001	
0	-1.734	-0.415	-1.638	
Н	-3.712	-0.447	-2.066	
Н	-3.016	-2.043	-1.760	
Н	-2.740	-1.386	0.674	
Н	-1.012	-1.020	-1.352	
F	-3.632	0.401	0.394	
Н	-4.438	-1.430	0.112	

		III		
Atom	Х	Y	Z	
С	-3.0823	-0.8282	-1.3335	
С	-3.5283	-0.6837	0.1015	
0	-1.7564	-0.3883	-1.5514	
Н	-3.1997	-1.8778	-1.6281	
Н	-3.7293	-0.2268	-1.9756	
Н	-4.5435	-1.0681	0.2288	
Н	-1.0982	-1.0714	-1.2882	
F	-3.5469	0.6740	0.4598	
Н	-2.8468	-1.1891	0.7853	
С	0.8666	-2.5836	0.1177	
С	0.6424	-1.7990	1.3855	
0	0.4209	-1.9121	-1.0496	
Н	1.9351	-2.8111	0.0472	
Н	0.3194	-3.5268	0.1714	
Н	1.0704	-2.3225	2.2431	
Н	1.0298	-1.1642	-1.2474	
F	-0.7390	-1.6612	1.6298	
Н	1.0588	-0.7955	1.3223	
С	3.0823	0.8282	-1.3335	
С	3.5283	0.6837	0.1015	
0	1.7564	0.3883	-1.5514	
Н	3.1997	1.8778	-1.6280	
Н	3.7293	0.2268	-1.9756	
Н	4.5435	1.0681	0.2288	
Н	1.0982	1.0714	-1.2882	
F	3.5469	-0.6740	0.4598	
Н	2.8468	1.1891	0.7853	
С	-0.8666	2.5836	0.1177	
С	-0.6424	1.7990	1.3855	
0	-0.4209	1.9122	-1.0496	
H	-1.9351	2.8111	0.0472	
H	-0.3194	3.5268	0.1714	
H	-1.0704	2.3225	2.2431	
H	-1.0298	1.1642	-1.2474	
F	0.7390	1.6612	1.6298	
Н	-1.0588	0.7955	1.3223	

		IV			
Atom	Х	Y	Ζ		
С	1.5526	-2.7297	0.5906		
С	1.1188	-2.8076	-0.8507		
0	1.0407	-1.6053	1.2768		
Н	2.6413	-2.6491	0.6120		
Н	1.2700	-3.6566	1.1040		
Н	1.6451	-3.6109	-1.3711		
Η	0.0572	-1.5840	1.2469		
F	-0.2570	-3.0985	-0.9229		
Н	1.2815	-1.8595	-1.3616		
С	-2.7297	-1.5526	0.5906		
С	-2.8076	-1.1188	-0.8507		
0	-1.6053	-1.0407	1.2768		
Н	-2.6491	-2.6413	0.6120		
Н	-3.6566	-1.2700	1.1040		
Н	-3.6109	-1.6451	-1.3711		
Н	-1.5840	-0.0572	1.2469		
F	-3.0985	0.2570	-0.9229		
Н	-1.8595	-1.2815	-1.3616		
С	2.7297	1.5526	0.5906		
С	2.8076	1.1188	-0.8507		
0	1.6053	1.0407	1.2768	•	
Н	2.6491	2.6413	0.6120		
Н	3.6566	1.2700	1.1040		
Н	3.6109	1.6451	-1.3711		
Н	1.5840	0.0572	1.2469		
F	3.0985	-0.2570	-0.9229		
Н	1.8595	1.2815	-1.3616		
С	-1.5526	2.7297	0.5906		
С	-1.1188	2.8076	-0.8507		
0	-1.0407	1.6053	1.2768		
Н	-2.6413	2.6491	0.6120		
Н	-1.2700	3.6566	1.1040		
Н	-1.6451	3.6109	-1.3711		
Н	-0.0572	1.5840	1.2469		
F	0.2570	3.0985	-0.9229		
Н	-1.2815	1.8595	-1.3616		

			\mathbf{V}		
	Atom	X	Y	Ζ	
-	С	3.3575	-0.5517	-1.2229	
	С	3.8033	-0.2498	0.1865	
	0	1.9533	-0.5627	-1.3809	
	Н	3.7185	-1.5478	-1.4920	
	Н	3.8172	0.1679	-1.9101	
	Н	4.8808	-0.4016	0.2901	
	Н	1.5647	0.3271	-1.2102	
	F	3.5416	1.0950	0.4907	
	Н	3.2606	-0.8569	0.9110	
	С	0.4347	2.0383	0.4865	
	С	-0.5156	3.1785	0.7394	
	Ο	0.4542	1.6423	-0.8760	
	Н	0.1858	1.1942	1.1386	
	Н	1.4451	2.3601	0.7419	
	Н	-0.3522	3.9912	0.0300	
	Н	-0.3986	1.2023	-1.0935	
	F	-1.8450	2.7500	0.5743	
	Н	-0.4185	3.5462	1.7637	
	С	-0.2253	-2.8297	0.3913	
	С	-0.2360	-1.9103	1.5868	
	0	-0.1671	-2.1522	-0.8505	
	Н	-1.1562	-3.4004	0.3997	
	Н	0.6071	-3.5367	0.4828	
	Н	-0.4120	-2.4755	2.5050	
	Н	0.7029	-1.7062	-0.9664	
	F	1.0084	-1.2708	1.7211	
	Н	-0.9924	-1.1345	1.4794	
	С	-3.0492	0.0591	-1.3518	
	С	-3.5503	-0.0805	0.0632	
	0	-1.6396	0.0355	-1.4459	
	Н	-3.3825	1.0256	-1.7365	
	H	-3.4898	-0.7255	-1.9770	
	H	-4.6350	0.0412	0.1068	
	H	-1.2754	-0.8545	-1.2358	
	F	-3.2552	-1.3686	0.5478	
	Н	-3.0632	0.6375	0.7226	

Completed Abbreviated References

38. Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

42. MOLPRO, version 2015.1, a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, , see http://www.molpro.net.