Interfacial Barriers to Gas Transport in Zeolites: Distinguishing Internal and External Resistances

Ravi C. Dutta^a and Suresh K. Bhatia^{a,*}

^{*} To whom correspondence may be addressed. Tel.: +61 7 3365 4263. Email: <u>s.bhatia@uq.edu.au</u>.

^a School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.

Functional form of the force field used to represent bonded interactions in PI:

$$U^{bonded} = \sum_{b} \left[k_{2}(b-b_{0})^{2} + k_{3}(b-b_{0})^{3} + k_{4}(b-b_{0})^{4} \right] \\ + \sum_{a} \left[k_{2}(\theta-\theta_{0})^{2} + k_{3}(\theta-\theta_{0})^{3} + k_{4}(\theta-\theta_{0})^{4} \right] \\ + \sum_{a} \left\{ k_{1} \left[1 - \cos(\phi - \phi_{1}^{0}) \right] \right\} + \left\{ k_{2} \left[1 - \cos(2\phi - \phi_{2}^{0}) \right] \right\} \\ + \sum_{\phi} \left\{ k_{1} \left[1 - \cos(3\phi - \phi_{3}^{0}) \right] \right\} \\ + \sum_{b} \sum_{b} k(b-b_{0})(b' - b'_{0}) + \sum_{b,\theta} k(b-b_{0})(\theta-\theta_{0}) \\ + \sum_{b,\theta} k(\theta-\theta_{0})(\theta' - \theta'_{0}) + \sum_{\theta,\theta,\psi} k(\theta-\theta_{0})(\theta' - \theta'_{0})\cos\phi \\ + \sum_{b,\phi} (b-b_{0}) \left[k_{1}\cos\phi + k_{2}\cos2\phi + k_{3}\cos3\phi \right] \\ + \sum_{\theta,\phi} (\theta-\theta_{0}) \left[k_{1}\cos\phi + k_{2}\cos2\phi + k_{3}\cos3\phi \right] \\ + \sum_{\chi} k_{2}\chi^{2}$$
(S1)

Table ST1. Functional form of the force field used to represent the non-bonded interactions in this study (hybrid potential).

Interaction	functional form
Polymer -Polymer	$U_{ij}^{non-bond} = \sum_{i,j} \varepsilon_{ij} \left[2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^9 - 3 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]$
Polymer-Zeolite	$U_{ij}^{non-bond} = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$
Polymer-Gas	$U_{ij}^{non-bond} = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$
Zeolite-Zeolite	none
Zeolite-Gas & Gas-Gas	$U_{ij}^{non-bond} = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_i q_j}{r_{ij}}$

Molecule	Atom	€ _{gas-gas} (K ⁻¹)	σ _{gas-gas} (nm)	€ _{gas-zeo} (K ⁻¹)	σ _{gas-zeolite} (nm)	q(e)	Ref
Hydrogen (H ₂)	H ₂ UA	34.02	0.296	51.233	0.262	0	1, 2
Carbon dioxide	C_CO ₂	28.129	0.2757	27	0.290	$C_{CO_2} = 0.6512$ $O_{CO_2} = -0.3256$	3, 4
(CO ₂)	O_CO ₂	80.51	0.3033	79	0.305	$Si_{zeo} = +2$ $O_{zeo} = -1$	

Table ST2. Lennard–Jones (12-6) parameters, partial charges for the EPM2 CO₂, and united-atom $\rm H_2$

 Table ST3.
 Kinetic diameters of gas molecules.

Molecule	Kinetic Diameter (Å)	Ref
CO ₂	3.3	5
CH ₄	3.8	5
H ₂	2.9	5

 Table ST4.
 Characterization of zeolite pore structure

Zeolite	Limiting window size	Limiting cage
		Size
SAS	4.22	8.99
MFI	4.46	-
PON	4.3	4.93

SAS		MFI		PON	
L (nm)	D_o	L (nm)	D_o	L(nm)	D_o
	$(x \ 10^9 \ m^2/sec)$		$(x \ 10^9 \ m^2/sec)$		$(x \ 10^9 \ m^2/sec)$
3.15	2.0 (±0.1)	4.224	3.1 (±0.25)	2.97	1.1 (±0.1)
4.2	2.4 (±0.1)	6.207	3.8 (±0.25)	4.75	1.7 (±0.1)
6.25	3.1 (±0.1)	8.202	5.0 (±0.5)	6.53	2.0 (±0.1)
8.3	3.8 (±0.2)	10.19	6.8 (±0.5)	10.09	3.6 (±0.2)
10.4	4.5 (±0.2)	14.19	10.2 (±0.5)	13.66	4.8 (±0.2)
14.6	5.5 (±0.3)				

Table ST5. Length dependency of corrected diffusion coefficient (D_o) of methane in zeolites

Table ST6. Kinetic and perm-selectivities of the gases

Gas	$D_o (x10^{-9} \mathrm{m^2/sec})$	S(cc(STP)/cc. atm)	Kinetic selectivity (H ₂ /CH ₄)	Perm-Selectivity (H ₂ /CH ₄)
CH ₄	7.0 (±0.5)	13.10822	9 (±0.2)	0.38 (±0.05)
H ₂	63 (±3)	0.548537		

Figure S1. Schematic illustration of inside the zeolite and the mean force experienced by the gas molecules at different locations in the pore.

Figure S2: Structure of the (a) PI-SAS hybrid system, (b) 6FDA-Durene polyimide polymer chain and (c) Density profile of PI in the PI-SAS composite system at T=300K.

Figure S3: Free energy profiles of CH_4 gas in SAS zeolite at T= 300K in the presence of bulk gas and polymer at the loading of ~1 mol/u.c.

Figure S4: (a) Adsorption isotherms of CH_4 and H_2 in SAS zeolite at T=300 K. The dashed lines indicate the fitted adsorption isotherms using the "Langmuir sorption" model eq (15), and (b) log-log plot of centre of mass mean square displacement (MSD) of CH_4 and H_2 vs. time (window size average) in SAS zeolite at a loading of 1 molecule per unit cell.

REFERENCES

- 1. A. I. Skoulidas, D. M. Ackerman, J. K. Johnson and D. S. Sholl, *Phys. Rev. Lett.*, 2002, **89**, 185901.
- 2. A. I. Skoulidas and D. S. Sholl, J. Phys. Chem. A, 2003, 107, 10132-10141.
- 3. J. G. Harris and K. H. Yung, J. Phys. Chem., 1995, 99, 12021-12024.
- 4. A. Goj, D. S. Sholl, E. D. Akten and D. Kohen, *J. Phys. Chem. B*, 2002, **106**, 8367-8375.
- 5. K. C. K. Ahmad Fauzi Ismail, Takeshi Matsuura, *Gas Separation Membranes* Springer International Publishing, Switzerland, 2015.