Supporting Information

Reversible hydrogen storage in pristine and Li decorated 2D boron

hydride

Long Chen^a, Xianfei Chen^{a*}, Chao Duan^a, Yi Huang^{b, c†}, Qian Zhang^a, Beibei Xiao^d

^a College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

^b State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China

^c College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China

^d School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

^{*} Corresponding author. Email: <u>chenxianfei2014@cdut.edu.cn;</u>

[†] Corresponding author. Email: <u>huangyi@cdut.cn</u>

Fig. S1 The most favorable atomic configuration of single H₂ adsorption on 2×3 BH, E_{ad} and *h* indicate the adsorption energy of H₂ molecule and the distance from H₂ molecule to BH layer.

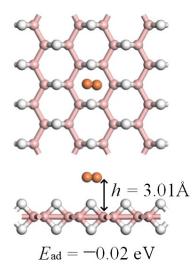


Fig. S2 The atomic configuration of 2×3 (BH) with Na, K, Al, Ca and Mg doped on

60 bod 60 60 00 -20 00 00 ¢ 20 • Mg AÌ -Ca K 8 10 0 0 0 0 đ 0 0 •*h*=3.19Å *h*=2.60Å *h*=2.13Å *h*=2.02Å *h*=1.80Å Ĵ î 2 2 2

BH, respectively, h indicates the distance from the metal atom to the BH layer.

Fig. S3 The optimized structures of Li-BH system with (a) one H_2 , (b) two H_2 , (c) three H_2 and (d) four H_2 . The *l* indicates the nearest distance of H_2 to the Li. The red balls refer to the adsorbed H_2 molecules for clarity.

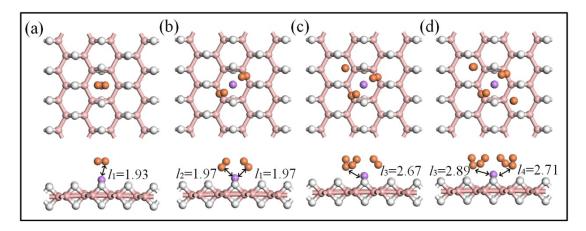
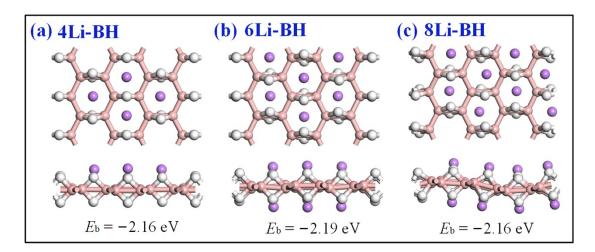



Fig. S4 The most favorable atomic configurations of 4, 6 and 8 Li atoms adsorption on 2×2 BH, E_b indicates the average binding energy of Li atom.

