Supplementary Information for: Tuning phase transitions of aqueous protein solutions by multivalent cations ${ }^{\dagger}$

Olga Matsarskaia, ${ }^{\text {a }}$ Felix Roosen-Runge, ${ }^{b}$ Gudrun Lotze, ${ }^{c}$ Johannes Möller, ${ }^{c}$ Alessandro Mariani, ${ }^{c}$ Fajun Zhang, ${ }^{a}$ and Frank Schreiber ${ }^{a *}$

1 Calculation of effective protein surface charge, $Q(e)$, from ζ potentials

From the ζ potential data obtained from the measurements, the effective protein charge Q was calculated as follows.

First, the Debye screening length, κ^{2} was calculated as ${ }^{1}$

$$
\begin{equation*}
\kappa^{2}=4 \pi \lambda_{B} N_{A} \sum_{i} n_{i} Z_{i}^{2} \tag{1}
\end{equation*}
$$

with the Bjerrum length $\lambda_{B}{ }^{2}$

$$
\begin{equation*}
\lambda_{B}=\frac{e^{2}}{4 \pi \varepsilon_{0} \varepsilon_{H_{2} O} k_{B} T} \tag{2}
\end{equation*}
$$

with e being the elementary charge, ε_{0} the vacuum dielectric permittivity and $\varepsilon_{\mathrm{H}_{2} \mathrm{O}}$ the total dielectric permittivity of water at the respective temperature ${ }^{3}$.

The Henry equation relates the electrophoretic mobility μ of a colloidal particle with a spherical shape, a radius a and a zeta potential ζ in a medium with a viscosity η via ${ }^{4,5}$

$$
\begin{equation*}
\mu=\frac{2}{3} \frac{\varepsilon_{r} \varepsilon_{0}}{\eta} \zeta f(\kappa a) \tag{3}
\end{equation*}
$$

Here, the Henry function $f(\kappa a)$ as given by Ohshima ${ }^{5}$

$$
\begin{equation*}
f(\kappa a)=1+\frac{1}{2}\left[1+\left(\frac{2.5}{\kappa a[1+2 \exp (-\kappa a)]}\right)\right]^{-3} \tag{4}
\end{equation*}
$$

is used to relate the electrophoretic mobility. The ζ potential is then calculated with the BSA radius $a=3.3 \mathrm{~nm}$. The default Zetasizer setting uses a Henry function $f(\kappa a)=1.5$, which does not consider effects specific to the systems investigated here. Therefore, corrected ζ values $\zeta_{\text {corr }}$ are obtained by multiplying each ζ potential value by its corresponding $f(\kappa a)$ value. The $\zeta_{\text {corr }}$ values are furthermore rescaled by multiplying them by $e / k_{B} T$. The rescaled values are referred to as ζ^{*}.

The protein surface charge density, $\sigma\left(C / m^{2}\right)$, is given by ${ }^{6}$

[^0]\[

$$
\begin{equation*}
\sigma=\frac{\varepsilon_{0} \varepsilon_{r} \kappa k_{B} T}{e}\left(2 \sinh \left(\zeta^{*} / 2\right)+\left(4 /(\kappa a) \tanh \left(\zeta^{*} / 4\right)\right)\right) \tag{5}
\end{equation*}
$$

\]

Finally, the surface charge Q of BSA under the respective sample conditions given by salt concentration and temperature are calculated as

$$
\begin{equation*}
Q=4 \pi a^{2} \sigma \tag{6}
\end{equation*}
$$

2 Fitting model for $Q(e)$ as a function of temperature and salt concentration

We begin with a standard Langmuir-like equation describing the binding of cations to the protein surface:

$$
\begin{equation*}
Q=Q_{0}+\frac{N v c}{c+K} \tag{7}
\end{equation*}
$$

which can be converted into its alternative form

$$
\begin{equation*}
N v c+K\left(Q_{0}-Q\right)+c\left(Q_{0}-Q\right)=0 \tag{8}
\end{equation*}
$$

Here, Q_{0} is the initial protein surface charge in the absence of salt, N is the number of binding sites, v the valence of the salt (here, it is always +3), K the binding constant and c the salt concentration.

Next, we define the point of zero charge:

$$
\begin{equation*}
Q\left(c_{0}\right)=0 \tag{9}
\end{equation*}
$$

and the charge at $c_{s}=c_{1}=1 \mathrm{mM}$ (plateau value) as

$$
\begin{equation*}
Q\left(c_{1}\right)=Q_{1} \tag{10}
\end{equation*}
$$

Substituting expressions 9 and 10 into Eqn. 8, we obtain a system of linear equations:

$$
\begin{equation*}
N v c_{0}+K Q_{0}+c Q_{0}=0 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
N v c_{1}+K\left(Q_{0}-Q_{1}\right)+c_{1}\left(Q_{0}-Q_{1}\right)=0 \tag{12}
\end{equation*}
$$

which allows us to express N and K from Eqn. (7) as

$$
\left(\begin{array}{cc}
v c_{0} & Q_{0} \tag{13}\\
v c_{1} & Q_{0}-Q_{1}
\end{array}\right)\binom{N}{K}=\binom{-c_{0} Q_{0}}{-c_{1}\left(Q_{0}-Q_{1}\right)}
$$

Solving this system of equations yields the following expressions for K and N :

$$
\begin{gather*}
N=\frac{1}{v} \frac{Q_{0}\left(Q_{0}-Q_{1}\right)\left(c_{1}-c_{0}\right)}{c_{0}\left(Q_{0}-Q_{1}\right)-c_{1} Q_{0}} \tag{14}\\
K=\frac{c_{0} c_{1} Q_{1}}{c_{0}\left(Q_{0}-Q_{1}\right)-c_{1} Q_{0}} \tag{15}
\end{gather*}
$$

and, finally, the equation used to fit the temperature- and salt concentration-dependent Q values:

$$
\begin{equation*}
Q=Q_{0}\left(1+\frac{c\left(Q_{0}-Q_{1}\right)\left(c_{1}-c_{0}\right)}{c\left(c_{0}\left(Q_{0}-Q_{1}\right)-c_{1} Q_{0}\right)+c_{0} c_{1} Q_{1}}\right) \tag{16}
\end{equation*}
$$

References

1 A. Delgado, F. González-Caballero, R. Hunter, L. Koopal and J. Lyklema, J. Colloid Interface Sci., 2007, 309, 194-224.

2 J. Israelachvili, Intermolecular and Surface Forces., Academic Press, London, 1991.
3 B. B. Owen, R. C. Miller, C. E. Milner and H. L. Cogan, J. Phys. Chem., 1961, 65, 2065-2070.
4 D. C. Henry, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1931, 133, 106-129.
5 H. Ohshima, J. Colloid Interface Sci., 1994, 168, 269-271.
6 H. Ohshima, T. W. Healy and L. R. White, J. Colloid Interface Sci., 1982, 90, 17-26.

[^0]: ${ }^{a}$ Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany. Fax: +49 (0)7071 295110; Tel: + 49 (0)7071 2978663; E-mail: frank.schreiber@uni-tuebingen.de
 ${ }^{b}$ Division of Physical Chemistry, Lund University, Lund, Sweden
 ${ }^{c}$ ESRF, Grenoble, France

