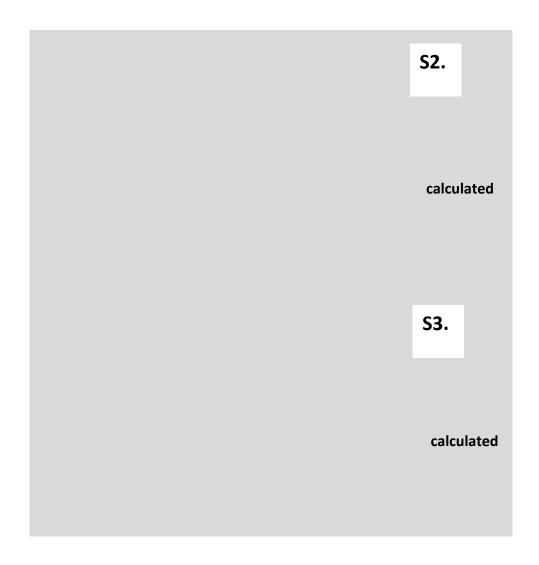

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supplementary materials

Unusual dielectric response of 4-methyl-1,3-dioxolane derivatives

Marzena Rams-Baron ^{1,2*}, Agnieszka Jędrzejowska ^{1,2}, Mateusz Dulski ^{2,3}, Kamila Wolnica ^{1,2}, Korbinian Geirhos ⁴, Peter Lunkenheimer ⁴, Marian Paluch ^{1,2}

1. The comparison of theoretical and experimental Raman spectra for MD derivatives


¹Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland

²Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland

³Institute of Material Science, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland

⁴ Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany

^{*}corresponding author: marzena.rams-baron@us.edu.pl

Figure S1-S3. Temperature-dependent Raman spectra of 2MD, 3MD, 5MD collected in the 3300 - 120 cm⁻¹ range at temperatures from 293 K to 113 K juxtaposed with theoretical spectrum calculated for theoretical models assumed after optimization procedure for dioxolane derivatives (2MD: ring-like, 3MD: deformed ring-like, 5MD: Möbious ribbon).