Nanoporous Gold Functionalized with Praseodymia-Titania

Mixed Oxides as a Stable Catalysts for the Water-Gas Shift

Reaction

Junjie Shi^{a,b}, Arne Wittstock^{a,e}, Christoph Mahr^c, M. Mangir Murshed^{d,e}, Thorsten M. Gesing^{d,e}, Andreas Rosenauer^{c,e}, Marcus Bäumer^{a,e*}

^aInstitute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany

^bShandong Applied Research Centre of Gold Nanotechnology, Department of Chemistry & Chemical Engineering, Yantai University, Yantai, China

^cInstitute of Solid State Physics, University of Bremen, Otto-Hahn- Allee. 1,28359, Bremen, Germany

^dSolid State Chemical Crystallography, Institute of Inorganic Chemistry and

Crystallography, University of Bremen, Leobener Str. 7, 28359 Bremen, Germany

^eMAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, 28359 Bremen, Germany

*Corresponding author: Leobener Strasse UFT, Bremen, Germany, Phone: +49 421 218 63170, Email: mbaeumer@uni-bremen.de

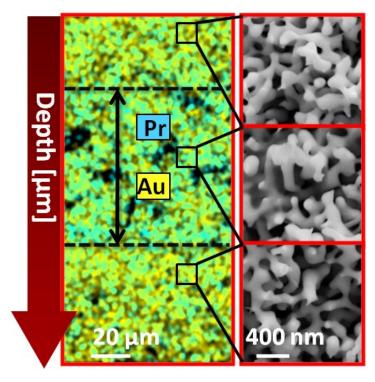


Figure S1. SEM and elemental maps of freshly broken cross-sections of PrO_x/npAu disks acquired at different depths along the cross sections.

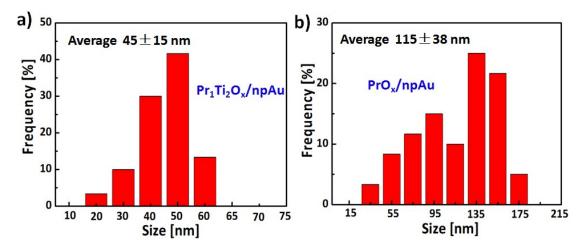


Figure S2. a) and b) show the gold ligament size distributions of $Pr_1Ti_2O_x/npAu$ and $PrO_x/npAu$, respectively. Both samples were first heated to 450°C in helium and then used for WGS for more than 40h (eed-gas mixture: 5.8 vol% CO, 22 vol% H₂O, helium as carrier gas; total gas flow 32 mL min⁻¹).

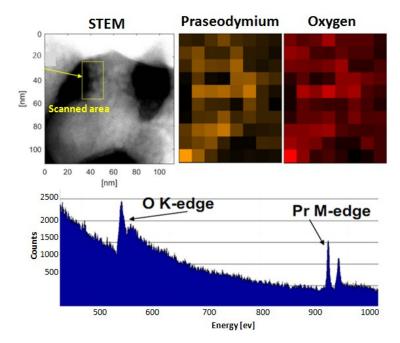


Figure S3. STEM image of PrO_{*}/npAu, representative EELS spectrum and resulting elemental distribution. Evaluation of O-edge (in red), and Pr-M edge (in brown).

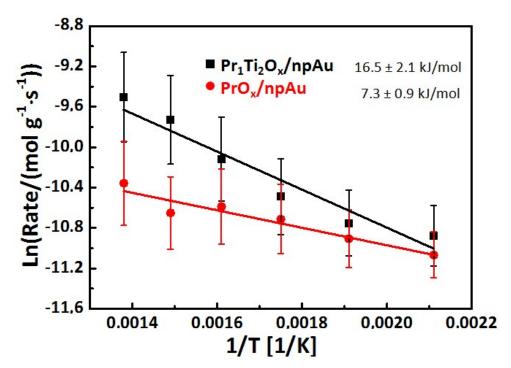


Figure S4. Arrhenius plots of the samples revealing an apparent activation energy of WGS of 16.5 \pm 2.1 kJ/mol for Pr₁Ti₂O_{*}/npAu and 7.3 \pm 0.9 kJ/mol for PrO_{*}/npAu.

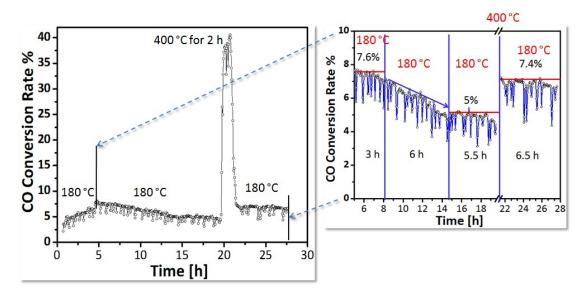


Figure S5. Stability tests carried out with the $Pr_1Ti_2O_x/npAu$ catalysts for WGS at 180 °C. Reaction at 180 °C in feed gas; after 20h temperature rise to 400°C for 2 h; cool-down to 180 °C. Feed-gas mixture: 5.8 vol% CO, 22 vol% H₂O, helium as carrier gas; total gas flow 32 mL min⁻¹, m_{catal} = 15.0 \pm 0.2 mg, space velocity 128 000 mL h⁻¹g_{cat}⁻¹. (In the whole process the full feed-gas mixture continuously passed through the reactor without any change.)

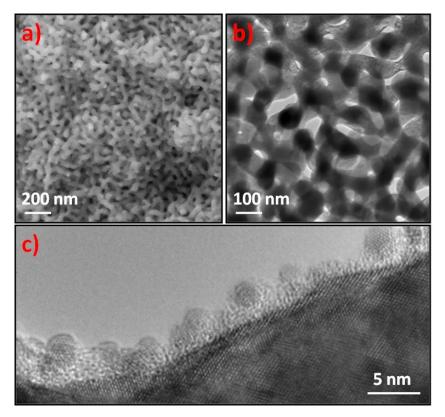


Figure S6. (a) SEM, (b) TEM and (c) HRTEM images of $Pr_1Ti_2O_x/npAu$ after WGS at 400 °C for 40h. Feed-gas mixture: 5.8 vol% CO, 22 vol% H₂O, helium as carrier gas.