Supplemental Information for

Orientation of nitro-group governs the fluorescence lifetime of nitrobenzoxadiazole (NBD)-labeled lipids in lipid bilayers

Hugo A. L. Filipe,^{†a,b} Šárka Pokorná,^{†c} Martin Hof,^c Mariana Amaro ^{*c} and Luís M. S. Loura ^{*a,d}

^a Coimbra Chemistry Center, University of Coimbra, P-3004-535 Coimbra, Portugal

^b CNC – Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-517 Coimbra, Portugal

^c Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 182 23 Prague, Czech Republic

^d Faculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal

[†] H.A.L.F. and S.P. contributed equally to this work.

* Corresponding authors

M.A.: Telephone: +420-266053264; Fax: +420-286582677; E-mail mariana.amaro@jh-inst.cas.cz L.M.S.L.: Telephone: +351-239488485; Fax: +351-239827126; E-mail: lloura@ff.uc.pt

Supplementary Information

Contents

Table S1: average lifetimes of C6NBD-PC and C12NBD-PC in DOPC and POPC LUVs

Gromacs topology files for probes

Description of the Martini parameterization of the NBD fluorophore

Fig. S1: Coarse Grained mapping of the NBD fluorophore

Fig. S2: Bond length distributions for the Martini and mapped atomistic parameterization of NBD

Fig. S3: Angle distributions for the Martini and mapped atomistic parameterization of NBD

Fig. S4: Dihedral distributions for the Martini and mapped atomistic parameterization of NBD

Fig. S5: Potential of Mean Force (PMF) profiles for the interaction of NBD-C₄ and NBD-C₈ with a POPC bilayer at atomistic and coarse grained level

Fig. S6: Time evolution of the transverse location of individual fluorophores (atomistic simulations)

Fig. S7: Time evolution of the transverse location of individual fluorophores (CG simulations)

Fig. S8: Calculated POPC *sn*-1 order parameter profiles in the absence and in the presence of C₆NBD-PC and C₁₂NBD-PC

Fig. S9: Averaged lifetimes $\langle \tau \rangle$ obtained for different NBD probes in fluid PC bilayers, as a function of their simulated average number of water-NBD NO2 H-bonds

 Table S2: Orientation and H-bonding from MD and fluorescence lifetimes for different NBD

 lipid probes

Table S1: average lifetimes of C6NBD-PC and C12NBD-PC in DOPC and POPC LUVs

Average fluorescence lifetime, $\langle \tau \rangle$, of C₆NBD-PC or C₁₂NBD-PC in DOPC or POPC LUVs of different diameter, in H₂O buffer. Error are deviations from at least 3 independent samples.

< τ > (ns)	POPC	DOPC
C6NBD-PC	7.16 ± 0.18	6.35 ± 0.13
C ₁₂ NBD-PC	6.21 ± 0.04	5.76 ± 0.05

Topology file for C6NBD-PC (Gromos 53a6 force field)

[moleculetype] ; Name nrexcl NBD 3

[atoms]

L.	acomo	1						
;	nr	type	resnr	residu	atom	cgnr	charge	mass
	1	CH3L	1	NBD	C1	1	0.4000	15.0350
	2	CH3L	1	NBD	C2	1	0.4000	15.0350
	3	CH3L	1	NBD	C3	1	0.4000	15.0350
	4	NL	1	NBD	N4	1	-0.5000	14.0067
	5	CH2	1	NBD	C.5	1	0.3000	14.0270
	6	CH2	1	NBD	C 6	2	0 4000	14 0270
	7		1	NBD	07	2	-0.8000	15 9994
	8	P	1	NBD	D8	2	1 7000	30 9738
	0	OMI	1		10	2	_0 000	15 0004
	10	OML	1	NDD	09	2	-0.8000	15 0004
	1 U		1	NDD	010	2	-0.8000	15.9994
		AU	1	NBD	011	2	-0.7000	15.9994
		CHZ	1	NBD	C12	3	0.4000	14.0270
	13	CHI	Ţ	NBD	C13	3	0.3000	13.0190
	14	OE	1	NBD	014	3	-0.7000	15.9994
	15	С	1	NBD	C15	3	0.7000	12.0110
	16	0	1	NBD	016	3	-0.7000	15.9994
	17	CH2	1	NBD	C17	4	0.0000	14.0270
	18	CH2	1	NBD	C18	4	0.0000	14.0270
	19	CH2	1	NBD	C19	5	0.0000	14.0270
	20	CH2	1	NBD	C20	5	0.0000	14.0270
	21	CH2	1	NBD	C21	6	0.25	14.0270
	22	NE	1	NBD	N22	6	-0.34	14.0067
	23	С	1	NBD	C23	6	-0.01	12.0110
	24	CR1	1	NBD	C24	6	-0.12	13.0190
	25	CR1	1	NBD	C25	6	0.19	13.0190
	26	С	1	NBD	C26	6	-0.37	12.0110
	27	NR	1	NBD	N27	6	0.86	14.0067
	28	0	1	NBD	028	6	-0.51	15.9994
	29	0	1	NBD	029	6	-0.46	15.9994
	30	NR	1	NBD	N30	6	-0.30	14.0067
	31	С	1	NBD	C31	6	0.41	12.0110
	32	C	1	NBD	C32	6	0.41	12.0110
	33	OE	1	NBD	033	6	0.02	15,9994
	34	NR	1	NBD	N34	6	-0.32	14 0067
	35	ч	1	NBD	н35 н35	6	0.32	1 008
	36	CH2	1	NBD	C36	0 7	0.20	14 0270
	30	OF	1	NBD	037	7	-0.7000	15 9997
	20	OE C	⊥ 1	NDD	037	י ר	-0.7000	12 0110
	20	C	1	NDD	030	ן ר	0.8000	15 0004
	39		1	NBD	039	/	-0.6000	14 0070
	40	CHZ	1	NBD	C40	8	0.0000	14.0270
	41	CH2	1	NBD	C41	8	0.0000	14.0270
	42	CH2	1	NBD	C42	9	0.0000	14.0270
	43	CH2	Ţ	NBD	C43	9	0.0000	14.0270
	44	CH2	1	NBD	C44	10	0.0000	14.0270
	45	CH2	1	NBD	C45	10	0.0000	14.0270
	46	CH2	1	NBD	C46	11	0.0000	14.0270
	47	CH2	1	NBD	C47	11	0.0000	14.0270

49 CH2 50 CH2 51 CH2 52 CH2 53 CH2 54 CH3	1 1 1 1 1 1	NBD NBD NBD NBD NBD NBD	C48 C49 C50 C51 C52 C53 C54	12 12 13 13 14 14 15	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	14.0270 14.0270 14.0270 14.0270 14.0270 14.0270 15.0350
<pre>[bonds] ; ai aj funct 1</pre>	2 2	gb_21 gb_21 gb_21 gb_27 gb_18 gb_28 gb_24 gb_28 gb_24 gb_28 gb_18 gb_27 gb_10 gb_5 gb_27	DE+00 1.0 DE+00 1.8 DE+00 1.0 DE+00 1.0 DE+00 1.0 DE+00 1.0 DE+00 1.0 DE+00 1.0 DE+00 1.0 DE+00 1.1 DE+00 1.1	500e+07 700e+07 800e+07 800e+07 800e+07 800e+07 800e+07 600e+07 800e+07 800e+07 800e+07 800e+07 800e+07 100e+06		

45	46	2	gb_27
46	47	2	gb 27
47	48	2	gb_27
48	49	2	gb_27
49	50	2	gb_27
50	51	2	gb 27
51	52	2	gb_27
52	53	2	gb_27
53	54	2	gb_27

[pairs]

;	ai	aj	funct
	1	6	1
	2	6	1
	3	6	1
	4	7	1
	5	8	1
	6	9	1
	6	10	1
	6	11	1
	7	12	1
	8	13	1
	9	12	1
	10	12	1
	11	14	1
	11	36	1
	12	15	1
	12	37	1
	13	16	1
	13	17	1
	13	38	1
	14	18	1
	14	37	1
	15	19	1
	15	36	1
	16	18	1
	17	20	1
	18	21	1
	22	25	1
	22	34	1
	22	31	1
	23	26	1
	23	30	1
	23	33	1
	24	27	1
	24	31	1
	24	34	1
	24	35	1
	25	28	1
	25	29	1
	25	30	1
	25	32	1
	26	33	1
	26	34	1
	27	30	1
	27	32	1

28	31	1
29	31	1
32	35	1
19	22	1
21	24	1
21	32	1
20	23	1
20	35	1
36	39	1
36	40	1
37	41	1
38	42	1
39	41	1
40	43	1
41	44	1
42	45	1
43	46	1
44	47	1
45	48	1
46	49	1
47	50	1
48	51	1
49	52	1
50	53	1
51	54	1
7	. 1	

[angles]				
;	ai	aj	ak	funct		
	1		4	2	2	ga 13
	1		4	3	2	ga 13
	1		4	5	2	ga 13
	2		4	3	2	ga 13
	2		4	5	2	ga 13
	3		4	5	2	ga 13
	4		5	6	2	ga 15
	5		6	7	2	ga 15
	6		7	8	2	ga 26
	7		8	9	2	ga 14
	7		8	10	2	ga_14
	7		8	11	2	ga_5
	8		11	12	2	ga_26
	9		8	10	2	ga_29
	9		8	11	2	ga_14
	10		8	11	2	ga_14
	11		12	13	2	ga_15
	12		13	14	2	ga_13
	12		13	36	2	ga_13
	13		14	15	2	ga_22
	13		36	37	2	ga_13
	14		13	36	2	ga_13
	14		15	16	2	ga_33
	14		15	17	2	ga_16
	15		17	18	2	ga_15
	16		15	17	2	ga_30
	17		18	19	2	ga_15
	18		19	20	2	ga_15

	19 22 23 23 23 23 23 24 24 25 26 26 26 26 26 27 28 30 30 31 31 32 21 20 36 37 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	$\begin{array}{c} 2 \ 0 \\ 2 \ 3 \\ 2 \ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 21 \\ 24 \\ 32 \\ 35 \\ 25 \\ 31 \\ 34 \\ 32 \\ 26 \\ 27 \\ 31 \\ 28 \\ 29 \\ 30 \\ 32 \\ 31 \\ 29 \\ 30 \\ 32 \\ 31 \\ 29 \\ 30 \\ 32 \\ 31 \\ 29 \\ 30 \\ 31 \\ 29 \\ 32 \\ 34 \\ 33 \\ 35 \\ 23 \\ 22 \\ 38 \\ 39 \\ 40 \\ 41 \\ 40 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \end{array}$	2 ga_15 2 125.60 2 119.00 2 117.20 2 121.40 2 123.30 2 127.30 2 127.30 2 123.90 2 120.10 2 117.70 2 118.00 2 117.30 2 133.60 2 118.30 2 122.20 2 124.80 2 108.10 2 104.70 2 109.40 2 104.70 2 104.70 2 104.70 2 104.70 2 104.70 2 111.10 2 ga_22 2 ga_33 2 ga_15 2 ga_		750.00 750.00 390.00 560.00 560.00 560.00 560.00 560.00 560.00 560.00 560.00 560.00 560.00 465.00 465.00 465.00 465.00 530.00 530.00
[;	dihedrals ai aj 1 4 4 5 4 5 5 6 6 7 6 7 7 8 7 8 7 8 8 11 11 12] ak 5 6 7 8 8 11 11 12 13	al funct 6 1 7 1 7 1 8 1 11 1 11 1 12 1 12 1 12 1 13 1 36 1	phi0 gd_29 gd_4 gd_36 gd_29 gd_20 gd_27 gd_20 gd_27 gd_29 gd_29 gd_34	ср	mult

13	14	15	1	gd 29		
13	36	37	1	gd 34		
14	15	17	1	gd_13		
36	37	38	1	gd_29		
15	17	18	1	gd_40		
17	18	19	1	gd_34		
18	19	20	1	gd_34		
19	20	21	1	gd_34		
20	21	22	1	gd_34		
21	22	35	1	gd_41		
22	23	24	1	0.0	33.50	2
26	27	29	1	0.0	33.50	2
37	38	40	1	gd_13		
38	40	41	1	gd_40		
40	41	42	1	gd_34		
41	42	43	1	gd_34		
42	43	44	1	gd_34		
43	44	45	1	gd_34		
44	45	46	1	gd_34		
45	46	47	1	gd_34		
46	47	48	1	gd_34		
47	48	49	1	gd_34		
48	49	50	1	gd_34		
49	50	51	1	gd_34		
50	51	52	1	gd_34		
51	52	53	1	gd_34		
52	53	54	1	gd_34		
	13 14 36 15 17 18 19 20 21 22 26 37 38 40 41 42 43 44 45 46 47 48 49 50 51 52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1314151336371415173637381517181718191819201920212021222122352223242627293738403840414041424142434243444344454647484748494849504950515051525152535253	131415113363711415171363738115171811718191181920119202112021221212235122232412627291373840138404114041421414243143444514445461454647146474814748491484950149505115051525315253541	1314151 gd_29 1336371 gd_34 1415171 gd_13 3637381 gd_29 1517181 gd_40 1718191 gd_34 1819201 gd_34 2021221 gd_34 2021221 gd_34 2122351 gd_411 22232410.026272910.03738401 gd_13 3840411 gd_34 4142431 gd_34 4243441 gd_34 4344451 gd_34 4546471 gd_34 4546471 gd_34 4546471 gd_34 4647481 gd_34 4748491 gd_34 4849501 gd_34 4950511 gd_34 4950511 gd_34 5051521 gd_34 515253541 gd_34	1314151 gd_29 1336371 gd_34 1415171 gd_13 3637381 gd_29 1517181 gd_34 1819201 gd_34 1920211 gd_34 2021221 gd_411 22232410.033.5026272910.033.503738401 gd_113 3840411 gd_34 4142431 gd_34 4243441 gd_34 4344451 gd_34 45461 gd_34 4647481 gd_34 4748491 gd_34 4849501 gd_34 4950511 gd_34 5051521 gd_34 5152535415253541 gd_34

[dihedrals]

;	ai	aj	ak	al funct				
	13		14	36	12	2	gi 2	
	15		14	16	17	2	gi 1	
	38		37	39	40	2	gi 1	
	22		21	35	23	2	0.00000E+00	0.16740E+03
	23		22	32	24	2	0.00000E+00	0.16740E+03
	32		23	31	34	2	0.00000E+00	0.16740E+03
	31		32	26	30	2	0.00000E+00	0.16740E+03
	26		31	27	25	2	0.00000E+00	0.16740E+03
	27		26	29	28	2	0.00000E+00	0.16740E+03
	32		34	33	30	2	0.00000E+00	0.16740E+03
	34		33	30	31	2	0.00000E+00	0.16740E+03
	33		30	31	32	2	0.00000E+00	0.16740E+03
	30		31	32	34	2	0.00000E+00	0.16740E+03
	31		32	34	33	2	0.00000E+00	0.16740E+03
	23		32	31	26	2	0.00000E+00	0.16740E+03
	32		31	26	25	2	0.00000E+00	0.16740E+03
	31		26	25	24	2	0.00000E+00	0.16740E+03
	26		25	24	23	2	0.00000E+00	0.16740E+03
	25		24	23	32	2	0.00000E+00	0.16740E+03
	24		23	32	31	2	0.00000E+00	0.16740E+03
	29		27	26	31	2	0.00000E+00	0.16740E+03
	25		26	27	28	2	0.00000E+00	0.16740E+03

Topology file for C12NBD-PC (Gromos 53a6 force field)

[moleculetype] ; Name nrexcl NBD 3

[atoms]

[ator	ແລງ						
; ni	r type	resnr	residu	atom	cgnr	charge	mass
_	1 CH3L	1	NBD	C1	1	0.4000	15.0350
2	2 CH3L	1	NBD	C2	1	0.4000	15.0350
	3 CH3L	1	NBD	С3	1	0.4000	15.0350
4	4 NL	1	NBD	N4	1	-0.5000	14.0067
[5 СН2	1	NBD	С5	1	0.3000	14.0270
6	6 СН2	1	NBD	C6	2	0.4000	14.0270
-	7 OA	1	NBD	07	2	-0.8000	15.9994
8	, отт 3 Р	1	NBD	P8	2	1.7000	30.9738
(9 OMT.	1	NBD	09	2	-0 8000	15 9994
1 (1	NBD	010	2	-0.8000	15 9994
11		1	NBD	010	2	-0.7000	15 9994
11	сч?	1	NBD	C12	2	0.7000	14 0270
1 3	си1 си1	1	NBD	C12	3	0.4000	13 0190
1 ×		1		014	2	-0.7000	15 0004
1		1	NBD	014 C15	ン つ	-0.7000	12 0110
1		1	NBD	016	с С	0.7000	12.0110
1 5		1	NBD	016	3	-0.7000	15.9994
1	/ CHZ	1	NBD	C1 /	4	0.0000	14.0270
1	B CHZ	1	NBD	C18	4	0.0000	14.0270
19	9 CH2	1	NBD	C19	5	0.0000	14.0270
20	J CH2	1	NBD	C20	5	0.0000	14.0270
21	L CH2	1	NBD	C21	6	0.0000	14.0270
22	2 CH2	1	NBD	C22	6	0.0000	14.0270
23	3 CH2	1	NBD	C23	7	0.0000	14.0270
24	4 CH2	1	NBD	C24	7	0.0000	14.0270
25	5 CH2	1	NBD	C25	8	0.0000	14.0270
26	6 CH2	1	NBD	C26	8	0.0000	14.0270
27	7 CH2	1	NBD	C27	9	0.25	14.0270
28	B NE	1	NBD	N28	9	-0.34	14.0067
29	9 C	1	NBD	C29	9	-0.01	12.0110
30) CR1	1	NBD	C30	9	-0.12	13.0190
31	l CR1	1	NBD	C31	9	0.19	13.0190
32	2 C	1	NBD	C32	9	-0.37	12.0110
33	3 NR	1	NBD	N33	9	0.86	14.0067
34	4 O	1	NBD	034	9	-0.51	15.9994
35	5 0	1	NBD	035	9	-0.46	15.9994
36	6 NR	1	NBD	N36	9	-0.30	14.0067
37	7 C	1	NBD	C37	9	0.41	12.0110
38	3 С	1	NBD	C38	9	0.41	12.0110
39	9 OE	1	NBD	039	9	0.02	15.9994
4() NR	1	NBD	N40	9	-0.32	14.0067
41	1 н	1	NBD	H41	9	0.29	1.008
42	2 CH2	1	NBD	C42	10	0.5000	14.0270
4 7	3 OF.	1	NBD	043	10	-0.7000	15.9994
44	4 C	1	NBD	C44	10	0.8000	12.0110
4	5 0	1	NBD	045	10	-0.6000	15.9994
4 6	6 СН2	1	NRD	C46	- 0 1 1	0.000	14.0270
4	7 CH2	1	NBD	C47	11	0.000	14.0270
1 .	,			~ 1	<u>+</u> +	0.000	+ + • 4 4 1 4

48	CH2	1	NBD	C48	12	0.0000	14.0270
49	CH2	1	NBD	C49	12	0.0000	14.0270
50	CH2	1	NBD	C50	13	0.0000	14.0270
51	CH2	1	NBD	C51	13	0.0000	14.0270
52	CH2	1	NBD	C52	14	0.0000	14.0270
53	CH2	1	NBD	C53	14	0.0000	14.0270
54	CH2	1	NBD	C54	15	0.0000	14.0270
55	CH2	1	NBD	C55	15	0.0000	14.0270
56	CH2	1	NBD	C56	16	0.0000	14.0270
57	CH2	1	NBD	C57	16	0.0000	14.0270
58	CH2	1	NBD	C58	17	0.0000	14.0270
59	CH2	1	NBD	C59	17	0.0000	14.0270
60	CH3	1	NBD	C60	18	0.0000	15.0350

[bonds]

;	ai		aj	funct			
		1		4	2	gb 21	
		2		4	2	gb 21	
		3		4	2	gb_21	
		4		5	2	gb_21	
		5		6	2	gb_27	
		6		7	2	gb_18	
		7		8	2	gb_28	
		8		9	2	gb_24	
		8		10	2	gb_24	
		8		11	2	gb_28	
		11		12	2	gb_18	
		12		13	2	gb_27	
		13		14	2	gb_18	
		13		42	2	gb_27	
		14		15	2	gb_10	
		15		16	2	gb_5	
		15		17	2	gb_23	
		17		18	2	gb_27	
		18		19	2	gb_27	
		19		20	2	gb_27	
		20			2	gb_27	
		$2 \perp$		22	2	$gb_2/$	
		22		23	2	gb_27	
		23		24	2	gb_27	
		24		25	2	gb_27	
		26		20	2	gb_27 ab_27	
		28		29	2	90_27 0 13520E+00	1 05000+07
		28		41	2	0.10120E+00	1.000000+07 1.87000+07
		29		30	2	0.13940E+00	1.0800e+07
		29		38	2	0.14440E+00	1.0800e+07
		30		31	2	0.14140E+00	1.0800e+07
		31		32	2	0.13800E+00	1.0800e+07
		32		33	2	0.14450E+00	8.5400e+06
		32		37	2	0.14310E+00	1.0800e+07
		33		34	2	0.12370E+00	1.6600e+07
		33		35	2	0.12320E+00	1.6600e+07
		36		37	2	0.13240E+00	1.1800e+07
		36		39	2	0.13780E+00	1.1000e+07
		37		38	2	0.14370E+00	1.0800e+07

ſ	pairs	1	
;	ai	ai	funct
	1	6	1
	2	6	1
	3	6	1
	4	7	1
	5	8	1
	6	9	1
	6	10	1
	6	11	1
	7	12	1
	8	13	1
	9	12	1
	10	12	1
	11	14	1
	11	42	1
	12	15	1
	12	43	1
	13	16	1
	13	17	1
	13	44	1
	14	18	1
	14	43	T
	15	19	Ţ
	15	42	1
	10	18	1
	1 /	20	1
	10	21	1
	19	22	1
	∠∪ 21	∠3 27	⊥ 1
	∠⊥ 2.2	24 25	⊥ 1
	22	20 06	⊥ 1
	23 24	20 27	⊥ 1
	<u> </u>	<u> </u>	<u> </u>

[angles] ; ai a: 1 1 2 2 3 4 5 6 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
s] aj ak 4 4 4 2 4 4 2 4 4 5 5 5 6 7 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
funct 2 3 5 3 5 5 6 7 8 9	
2 2 2 2 2 2 2 2 2 2 2 2 2	
ga_13 ga_13 ga_13 ga_13 ga_13 ga_13 ga_15 ga_15 ga_26 ga_14	

7	8	10	2 ga 14	
7	8	11	$2 qa_{5}$	
8	11	12	2 ga 26	
g	8	10	$2 ga_{20}$	
g	8	11	$2 ga_{2}$	
10	0	11	$2 ga_{14}$	
1 U	0		2 ga_14	
		13	2 ga_15	
12	13	14	2 ga_13	
12	13	42	2 ga_13	
13	14	15	2 ga_22	
13	42	43	2 ga_13	
14	13	42	2 ga_13	
14	15	16	2 ga_33	
14	15	17	2 ga 16	
15	17	18	2 ga 15	
16	15	17	2 ga 30	
17	18	19	2 ga 15	
18	19	20	2 ga 15	
19	20	21	2 ga 15	
20	21	2.2	2 ga 15	
21	22	23	$2 ga_{15}$ 2 ga 15	
22	22	24	$2 ga_{15}$ 2 ga_{15}	
22	2.0	25	$2 ga_{15}$ $2 ga_{15}$	
20	25	25	2 ga_15 2 ga_15	
24	25	20	$2 ya_{15}$	
20	20	27	2 ga_15	
28	29	30	2 125.60	750.00
28	29	38	2 119.00	/50.00
29	28	41	2 117.20	390.00
29	30	31	2 121.40	560.00
29	38	37	2 123.30	560.00
29	38	40	2 127.30	560.00
30	29	38	2 115.50	560.00
30	31	32	2 123.90	560.00
31	32	33	2 120.10	560.00
31	32	37	2 117.70	560.00
32	33	34	2 118.00	750.00
32	33	35	2 117.30	750.00
32	37	36	2 133.60	560.00
32	37	38	2 118.30	560.00
33	32	37	2 122.20	560.00
34	33	35	2 124.80	750.00
36	37	38	2 108.10	465.00
36	39	40	2 113 10	450 00
37	36	30	2 101 70	165 00
37	30	40	2 109.70	465.00
20	10	20	2 109.40	405.00
20 27	40	39	2 104.70	465.00
27	20	41	2 118.60	460.00
21	2 X	2 Y	Z IZ4.UU	130.00
26	$\angle I$	∠8	Z 111.10	530.00
42	43	44	2 ga_22	
43	44	45	2 ga_33	
43	44	46	2 ga_16	
44	46	47	2 ga_15	
45	44	46	2 ga_30	
46	47	48	2 ga_15	
47	48	49	2 ga 15	

	mult
	cp 33.50 33.50
2 ga_15 2 ga_15	phi0 gd_29 gd_4 gd_36 gd_29 gd_20 gd_27 gd_20 gd_27 gd_29 gd_34
	funct 1 1 1 1 1 1 1 1 1 1 1 1 1
50 51 52 53 54 55 56 57 58 59 60	al : 6 7 8 11 12 12 13 42 15 43 17 44 19 20 22 23 42 5 27 28 10 35 47 48 9 51 52 34 55 57 58 59
49 50 51 52 53 54 55 56 57 58 59] ak 5667 8811 11213 1442 1543 1718 1920 21223 242526 2728 23446 2728 293344 4647 4849 5051 52354 55657 58
48 49 50 52 53 54 55 56 57 58	aig aj 4 5 6 7 8 11 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 2 13 14 2 13 14 2 13 14 2 15 17 18 19 20 21 22 23 24 25 26 27 28 32 44 47 48 49 50 51 52 53 <tr< td=""></tr<>
	[dil ; dil ; di ; di ; di ; di ; di ; di ; di ; di
	[;

	57	58	59	60	1	gd_34			
[dihedr	als]						
;	ai	aj	ak	al fu	nct				
	13	3	14	42		12	2	gi 2	
	15	5	14	16		17	2	gi 1	
	44	1	43	45		46	2	gi 1	
	28	3	27	41		29	2	0.00000E+00	0.16740E+03
	29)	28	38		30	2	0.00000E+00	0.16740E+03
	38	3	29	37		40	2	0.00000E+00	0.16740E+03
	37	7	38	32		36	2	0.00000E+00	0.16740E+03
	32	2	37	33		31	2	0.00000E+00	0.16740E+03
	33	3	32	35		34	2	0.00000E+00	0.16740E+03
	38	3	40	39		36	2	0.00000E+00	0.16740E+03
	40)	39	36		37	2	0.00000E+00	0.16740E+03
	39)	36	37		38	2	0.00000E+00	0.16740E+03
	36	5	37	38		40	2	0.00000E+00	0.16740E+03
	37	7	38	40		39	2	0.00000E+00	0.16740E+03
	29)	38	37		32	2	0.00000E+00	0.16740E+03
	38	3	37	32		31	2	0.00000E+00	0.16740E+03
	37	7	32	31		30	2	0.00000E+00	0.16740E+03
	32	2	31	30		29	2	0.00000E+00	0.16740E+03
	31	_	30	29		38	2	0.00000E+00	0.16740E+03
	30)	29	38		37	2	0.00000E+00	0.16740E+03
	35	5	33	32		37	2	0.00000E+00	0.16740E+03
	31		32	33		34	2	0.00000E+00	0.16740E+03

Topology file for C₄NBD-PC (Martini 2.0 force field)

[r ;	mole mol NCC	ecul nam)4	.et <u></u> ne	ype] 1	nrexcl					
[2	atom	ns]								
;	id 1 2 3 4 5 6 7 8 9 10 11 12 13 14	ty Q0 Qa Na C2 SN C1 C1 C1 C1 SP SC SN SC	pe da 3 4 a 4	res 1 1 1 1 1 1 1 1 1 1 1 1 1	NC04 NC04 NC04 NC04 NC04 NC04 NC04 NC04	resi NC3 PO4 GL1 GL2 C1A NHC C1B C2B C3B C4B NO2 CC1 NON CC2	du 1 2 3 4 5 4 7 8 9 10 11 12 13 14	atom 1.0 -1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n cgnr	charge
r 1		1 - 1								
;	oonc i 1 2 3 3 5 4 7 8 9	15] 2 3 4 5 6 7 8 9 10		fund 1 1 1 1 1 1 1 1	ct 0.47 0.37 0.47 0.34 0.47 0.47 0.47 0.47 0.47	leng 1250 1250 1250 1250 1250 1250 1250 1250	th	forc	ce.c.	
[« ;	cons 11 11 12 6 6	12 14 13 12 14	in† j	ts] 1 1 1 1 1	unct 0.317 0.311 0.153 0.251 0.247	lengt	h			
[ä ;	angl i 2 3 4 7 8 11 11 12	j 3 3 5 7 8 9 12 14 6	k 4 5 6 9 10 13 6 14		funct 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120. 180. 180. 180. 180. 180. 116. 130. 58.	ang 0 0 0 0 0 0 0 0 0 0	fle 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2400.0 6000.0	force)))))))	e.c.

	13 12	6	2		117.5	1900.0	
	14 6	5	2		135.0	25.0	
[d:	ihedr	als]					
;	i	j	k	1	funct	angle	force.c.
	11	12	6	14	2	0.0	25.0
	12	6	14	11	2	0.0	25.0
	6	14	11	12	2	0.0	25.0
	14	11	12	6	2	0.0	25.0
	12	11	13	6	2	0.0	200.0
[e:	xclus	ions]					
11	12	13	6 14				
12	13	6	14				
13	6	14					
6	14						

6 14 12 14

Topology file for C₁₂NBD-PC (Martini 2.0 force field)

[mol ; mo NC	ecule lname 12	type] 1	nrexcl					
[ato: ; id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	ms] type Q0 Qa Na C1 C1 C1 C1 C1 C1 C1 SP3 SC4 SNa SC4	e resr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NC12 NC12 NC12 NC12 NC12 NC12 NC12 NC12	resic NC3 PO4 GL1 GL2 C1A C2A C3A NHC C1B C2B C3B C4B NO2 CC1 NON CC2	lu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	atom 1.0 -1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cgnr	charge
[bon ; i 2 3 3 5 6 7 4 9 10 11	ds] j 2 3 4 5 6 7 8 9 10 11 12	func 1 1 1 1 1 1 1 1 1 1	et 0.47 0.47 0.37 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47	lengt 1250 1250 1250 1250 1250 1250 1250 1250	h	force	e.c.	
[con ; i 13 13 14 8 8	strai 14 16 15 14 16	nts] j fu 1 1 1 1 1	0.317 0.311 0.153 0.251 0.247	length	1			
[ang ; i 2 2 3 5 6	les] j 3 5 6 7	k 4 5 6 7 8	funct 2 2 2 2 2 2	120.0 180.0 180.0 180.0 180.0	angle)))	25.0 25.0 25.0 25.0 25.0 25.0	force	e.C.

	49	10		2	1	80.0		25.0	1
	9 10	11		2	1	80.0		25.0	I
	10 11	12		2	1	80.0		25.0	I
	13 14	15		2	1	16.0		1800	.0
	13 16	8		2	1	30.0	2	400.0)
	14 8	16		2		58.0	6	000.0)
	15 14	8		2	1	17.5	1	900.0)
	16 8	7		2	1	35.0		25.0	I
[d	ihedr	alsl							
;	i		k	1		funct	a	ngle	force.c.
,	13	14	8	1	6	2	-	0.0	25.0
	14	8	16	1	3	2		0.0	25.0
	8	16	13	1	4	2		0.0	25.0
	16	13	14	8		2		0.0	25.0
	14	13	15	8		2		0.0	200.0
[e:	xclus	ionsl							
13	14	15	8	16					
14	15	8	16						
15	_ 0	16							

15 8 16 8 16 14 16

Description of the Martini parameterization of the NBD fluorophore

The number and distribution of the Martini beads, i.e. mapping, was chosen in order to preserve the geometrical structure of the NBD, which could be done with a five bead configuration, as shown in Fig. S1. Then, the attributed bonded and non-bonded (i.e. bead types) parameters, defined based on the mapping process, were tested and validated comparing the coarse grained (CG) model to atomistic data for the probes composed by the NBD group attached to an alkyl chains of different sizes, NBD-C₄ and NBD-C₈.^{1, 2} The bonded parameters were validated comparing 10 ns simulations of the molecule NBD-C₈ in water at both resolution levels. As shown in Fig. S2 to S4, the bond, angle and dihedral distribution of the CG model matched very well the atomistic data. Then, the non-bonded parameters were validated against our previous reported potential of mean force (PMF) profiles for the NBD-C_n homologous series,² in this case for both NBD-C₄ and NBD-C₈. The sampling at each umbrella window was done during 200 ns, discarding the first 50 ns as equilibration time. A time step of 20 fs was used in all simulations. As shown in Fig. S5, the PMFs obtained with the CG parameterizations are similar to those obtained at atomistic level, validating the type of Martini beads used.

Fig. S1 – Coarse grained mapping of the NBD fluorophore for the Martini parameterization regarding its atomistic structure. The groups of atoms (5, 6, 7, 8), (10, 11), (9, 12, 13), (1,2) and (3, 4) were defined as SP3, SC4, SNa, SNda, and SC4 Martini beads, respectively. Bead numbers are indicated in green.

Fig. S2 – Comparison of bond length distributions for the martini (gray) and mapped G53A6FF (red) parameterization of NBD-C₈ as used in reference ¹. For bond identification, please refer to bead number in Figure S1. Bonds (1-2), (1-5), (2-3), (2-4) and (4-5) were set to constraints and bonds (4-6) and (6-7) were set as regular bonds.

Fig. S3 – Comparison of angle distributions for the martini (gray) and mapped G53A6FF (red) parameterization of NBD-C₈ as used in reference ¹. For angle identification, please refer to bead number in Figure S1. Note that angles (1-2-4), (2-1-5) and (2-4-6) are actually not defined in the parametrization file.

Fig. S4 – Comparison of bond dihedral distributions for the martini (gray) and mapped G53A6FF (red) parameterization of NBD-C₈ as used in reference ¹. For dihedral identification, please refer to bead number in Figure S1.

Fig. S5 – Potential of Mean Force (PMF) profiles for the interaction of NBD-C₄ and NBD-C₈ with a POPC bilayer at atomistic 2 and coarse grained (this work) level.

Fig. S6 - Time evolution of the center of mass of the fluorophores of the eight NBD-PC molecules considered in the atomistic simulations, each of them depicted in a distinct color. Top: C_6NBD -PC; bottom: $C_{12}NBD$ -PC.

Fig. S7 - Time evolution of the transverse location z of the center of mass of the NBD fluorophore of each individual probe (black, blue and red for the top leaflet molecules; pink, green and cyan for the bottom leaflet molecules) in the CG simulations of C₄NBD-PC (top) and C₁₂NBD-PC (bottom).

Fig. S8 - (A) Deuterium order parameters (S_{CD}) for the POPC *sn*-1 atoms in the absence and in the presence of C₆- or C₁₂NBD-PC, calculated from the atomistic simulations. (B) Difference order parameter plots (ΔS_{CD}), obtained by subtraction of the pure POPC order parameter profile from those calculated in the presence of C₆- or C₁₂NBD-PC.

Fig. S9 - Intensity-averaged lifetimes $\langle \tau \rangle$ obtained for different NBD probes in fluid PC bilayers,³⁻⁷ represented as a function of their average number of water-NBD NO₂ hydrogen bonds determined by MD simulation.^{3, 8-10} The point (0, 10.1 ns) corresponds to polar aprotic solvents such as acetone, tetrahydrofuran or dioxane ¹¹. For water, $\langle \tau \rangle = 1.0$ ns,¹¹ and n = 2.1 was calculated from a simulation of NBD-C₄ in water. The points corresponding to the probes addressed in this work are highlighted with arrows. For more details, see Table S2.

		Orientation and H-bon	ding from M	ÍD	Fluorescence lifetime			
Probe	Short axis tilt/ °	Average number of water-NBD NO ₂ H- bonds/ fluorophore	System	Ref.	Intensity- averaged τ/ns	System	Ref.	
NBD- $C_n (n \ge 8)$	130	0.51	POPC	8	5.2	POPC	4	
22-NBD-Chol	130	0.96	POPC	9	6.0 ⁵ , 6.2 ⁶	DMPC, 40 °C ⁵ or 37 °C ⁶	5, 6	
C ₁₂ -NBD-PC	130	0.51	POPC	This work	6.2	POPC	This work	
NBD-PSH	100	0.56	DOPC	3	5.9	DOPC	3	
C ₆ -NBD-PC	100	0.38	POPC	This work	7.0	POPC	This work	
N-NBD-PE	70	0.16	POPC	10	8.7	Egg-PC	7	

Table S2 - MD simulation data on orientation and H-bonding, and experimental values of fluorescence lifetime for different NBD lipid probes. Unless stated otherwise, the data were obtained at room temperature/298 K.

NBD-C_n: N-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]alkyl; 22-NBD-Chol: 22-(N-(7-nitrobenz-2-1,3-benzoxadiazol-4-yl)amino)-23,24-bisnor-5-cholen-3 β -ol; C₁₂-NBD-PC: 1-palmitoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine; NBD-PSH: 1,2-dioleoyl-sn-glycero-3-phospho-L-serine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl); C₆-NBD-PC: 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-sn-glycero-3-phosphocholine; N-NBD-PE: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl); POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine; DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine; Egg-PC: L- α -phosphatidylcholine from chicken egg.

References

- 1. H. A. L. Filipe, D. Bowman, T. Palmeira, R. M. S. Cardoso, L. M. S. Loura and M. J. Moreno, *Phys. Chem. Chem. Phys.*, 2015, **17**, 27534-27547.
- 2. H. A. L. Filipe, M. J. Moreno, T. Róg, I. Vattulainen and L. M. S. Loura, J. Phys. Chem. B, 2014, **118**, 3572-3581.
- 3. M. Amaro, H. A. L. Filipe, J. P. Prates Ramalho, M. Hof and L. M. S. Loura, *Phys. Chem. Chem. Phys.*, 2016, **18**, 7042-7054.
- 4. R. M. S. Cardoso, H. A. L. Filipe, F. Gomes, N. D. Moreira, W. L. C. Vaz and M. J. Moreno, *J. Phys. Chem. B*, 2010, **114**, 16337-16346.
- 5. L. s. M. S. Loura, A. Fedorov and M. Prieto, *Biochim. Biophys. Acta, Biomembr.*, 2001, **1511**, 236-243.
- 6. P. Ostašov, J. Sýkora, J. Brejchová, A. Olżyńska, M. Hof and P. Svoboda, *Chem. Phys. Lipids*, 2013, **167-168**, 62-69.
- 7. R. S. Brown, J. D. Brennan and U. J. Krull, J. Chem. Phys., 1994, 100, 6019-6027.
- 8. H. A. L. Filipe, M. J. Moreno and L. M. S. Loura, J. Phys. Chem. B, 2011, 115, 10109-10119.
- 9. J. R. Robalo, J. P. P. Ramalho and L. M. S. Loura, J. Phys. Chem. B, 2013, 117, 13731-13742.
- 10. H. A. L. Filipe, L. S. Santos, J. P. Prates Ramalho, M. J. Moreno and L. M. S. Loura, *Phys. Chem. Chem. Phys.*, 2015, **17**, 20066-20079.
- 11. S. Fery-Forgues, J.-P. Fayet and A. Lopez, J. Photochem. Photobiol., A, 1993, 70, 229-243.