Intrinsic photophysics of nitrophenolate ions studied by cryogenic ion

spectroscopy

Electronic Supplementary Information

Leah G. Dodson,^{1,#} Wyatt Zagorec-Marks,^{2,#} Shuang Xu,³ James E. T. Smith,² and J. Mathias

Weber²

¹JILA and NIST, University of Colorado, 0440 UCB, Boulder, CO 80309-0440, USA ²JILA and Department of Chemistry, University of Colorado, 0440 UCB, Boulder, CO 80309-0440, USA ³JILA and Department of Physics, University of Colorado, 0440 UCB,

Boulder, CO 80309-0440, USA

Table of Contents

Temperature-dependent measurements	S3
Figures	
S1 Temperature dependent spectra for <i>m</i> -NP	S3
S2 Temperature dependent band intensity ratios	S5
S3 Frontier orbitals	S6
S4 Comparison of low-temperature and room temperature	S7
S5 PES of <i>m</i> -nitrophenolate	S 8
S6 Torsion coordinate energy dependence of <i>m</i> -NP	S9
S7 Energy diagrams	S10

Tables

Calculated frequencies	S11
Transitions in origin region	S12
Group 1 transitions	S13
Group 2 transitions	S14
Group 3 transitions	S16

Temperature-dependent measurements

We performed a series of experiments varying the temperature of the cold trap from 30 - 124 K, in order to measure the temperature-dependence of the *m*-nitrophenolate experimental spectrum. The figure below shows the origin region and Group 1 modes of the resulting spectra, normalized to the peak absorption of the origin 0_0^0 band at 16003 cm⁻¹. As the temperature of the ion trap is increased, the intensity of the hot bands increases relative to the 0_0^0 band intensity. In principle, one could extract the ion temperature from these measurements, assuming one knows the Franck-Condon factors and vibrational energies of the relevant bands, by measuring the change in the integrated intensities of the hot bands relative to that of the origin band.

Fig. S1 Temperature-dependent *m*-nitrophenolate spectra, collected at five different trap temperatures in the electronic origin region.

The ratio of intensities of a hot band, I_1 to the origin band, I_{0-0} is equal to:

$$\frac{I_1}{I_{0-0}} = \frac{|\langle \phi_1'' | \phi_1' \rangle|^2 e^{-E_{1/kT}}}{|\langle \phi_{0-0}'' | \phi_{0-0}' \rangle|^2}$$

where $\langle \phi_1'' | \phi_1' \rangle$ is the Franck-Condon overlap, E_1 is the vibrational energy of the vibrational level in the electronic ground state which gives rise to the hot band, and *T* is the temperature of the ion. By rearranging terms, and taking the natural logarithm of the equation, we get:

$$ln\left(\frac{I_{1}\left|\left\langle\phi_{0-0}^{\prime\prime}|\phi_{0-0}^{\prime}\right\rangle\right|^{2}}{I_{0-0}\left|\left\langle\phi_{1}^{\prime\prime}|\phi_{1}^{\prime\prime}\right\rangle\right|^{2}}\right) = -E_{1}/kT.$$

We then rearrange terms again, yielding the following equation:

$$ln\left(\frac{I_{1}}{I_{0-0}}\right) - ln\left(\frac{|\langle \phi_{1}^{\prime\prime}|\phi_{1}^{\prime}\rangle|^{2}}{|\langle \phi_{0-0}^{\prime\prime}|\phi_{0-0}^{\prime}\rangle|^{2}}\right) = -E_{1}/kT.$$

Rearranging this function to obtain an equation that can be evaluated linearly gives us:

$$T = \frac{-E_1/kT}{ln\left(\frac{I_1}{I_{0-0}}\right) - ln\left(\frac{|\langle \phi_1'' | \phi_1' \rangle|^2}{|\langle \phi_{0-0}'' | \phi_{0-0}' \rangle|^2}\right)}$$

where plotting the right hand side of the previous equation versus the trap temperature should result in a straight line. Since the trap temperature does not equal the temperature of the ion, $T = T_{meas} + T_{corr}$, where T_{meas} is the temperature setting of the ion trap and T_{corr} is an additive correction term. Plotting the last equation as a function of T_{meas} produces a y-intercept value that equals T_{corr} . The values for E and ϕ are taken from the Franck-Condon simulations.

We evaluated the temperature correction term T_{corr} for the two lowest-energy hot bands, 1_1^1 and 1_2^2 , at 16051 and 16097 cm⁻¹, respectively. Each data set was fit linear with a slope equal to one. For the 1_1^1 peak, $T_{corr} = (35 \pm 3)$ K, and for 1_2^2 , $T_{corr} = (37 \pm 5)$ K. Therefore, data collected at a trap temperature of $T_{meas} = 30$ K are expected to represent the spectrum of ions with a temperature T = 30 + 35 K = (65 ± 5) K.

Fig. S2 Temperature dependence of the ratio of hot band intensities relative to the origin band in *m*-nitrophenolate.

Fig. S3 Frontier orbitals for *m*-, *p*-, and *o*-NP, calculated using CAM-B3LYP. Both *meta* and *para* isomers exhibit pure HOMO \rightarrow LUMO transitions for S₀ \rightarrow S₁. The S₀ \rightarrow S₁ transition for *o*-NP is HOMO \rightarrow LUMO+2, while the S₀ \rightarrow S₂ transition for *o*-NP is a mixture of HOMO-1 \rightarrow LUMO+2, HOMO-1 \rightarrow LUMO+6, and HOMO-3 \rightarrow LUMO+2.

Fig. S4 Comparison of the low-temperature experimental spectra obtained in this work (in black) with the room temperature data of Brøndsted Nielsen and co-workers¹ (in red, intensity brought to the same scale).

Fig. S5 Potential energy surfaces for the S_0 and S_1 states of *m*-NP. The surface was obtained at CAM-B3LYP/aug-cc-pVDZ with a relaxed scan over the nitro torsion (tors.) and pyramidalization (pyr.) coordinates. The red arrow indicates the vertical excitation from the relaxed ground state. Energies are given relative to the ground state minimum, in cm⁻¹.

Fig. S6 One-dimension scans of *m*-NP along the torsion (tors.) coordinate of the S_0 and S_1 states using CAM-B3LYP/aug-cc-pVDZ and a NO₂ pyramidalization angle constrained to zero (corresponding to a non-pyramidalized nitro group). Energies are given relative to the minimum energy structure for each surface, in cm⁻¹.

Fig. S7 Energy diagrams for the *m*-, *p*-, and *o*-nitrophenolate isomers, showing vertical energies relative to the singlet ground state minimum, in cm^{-1} . Some of the lowest-lying states are labeled, based on the point group of the ground state, i.e, without structural relaxation in the excited states.

		0-	-NP			т	e-NP			р	-NP	
Mode	Х		А		X		А		X		А	
1	18.30	A''	41.89	A''	41.45	A''	76.95	A''	95.84	A_2	88.66	A''
2	107.85	A''	133.33	A''	169.14	A''	150.68	A''	103.56	\mathbf{B}_1	178.59	A''
3	232.88	A''	152.85	A'	191.49	A''	213.41	A''	235.67	\mathbf{B}_2	195.32	A'
4	253.02	A'	243.41	A''	228.67	A'	219.36	A'	258.73	\mathbf{B}_1	257.46	A''
5	381.73	A'	337.54	A'	387.09	A'	246.72	A''	369.92	A_1	342.62	A'
6	429.30	A'	385.02	A''	439.62	A'	384.46	A'	439.32	A_2	373.87	A''
7	438.88	A''	456.38	A'	452.86	A''	439.41	A'	451.21	B_2	449.46	A'
8	546.34	A''	533.96	A''	526.84	A'	443.86	A''	487.26	\mathbf{B}_1	526.02	A''
9	565.75	A'	551.90	A'	563.49	A'	524.99	A'	551.72	B_2	546.87	A'
10	572.62	A'	636.22	A'	571.67	A''	563.57	A'	635.38	B_2	586.49	A'
11	662.60	A'	642.78	A''	683.07	A'	578.51	A''	648.04	A_1	638.26	A'
12	723.45	A''	673.86	A'	693.17	A''	654.18	A'	731.44	\mathbf{B}_1	684.33	A''
13	750.86	A''	761.27	A''	730.67	A''	690.02	A''	801.08	B_1	772.77	A'
14	810.20	A''	783.74	A''	804.41	A''	760.99	A'	801.17	A_2	785.47	A''
15	825.06	A'	804.02	A'	843.22	A'	792.14	A''	822.78	A_1	830.39	A'
16	870.95	A''	857.18	A'	876.43	A''	880.08	A''	859.05	A_1	891.18	A''
17	893.67	A'	873.30	A''	902.22	A''	920.26	A'	883.99	\mathbf{B}_1	983.00	A''
18	989.44	A''	959.42	A''	941.83	A'	944.17	A''	994.96	A_1	994.74	A'
19	998.41	A''	988.95	A''	982.56	A''	992.64	A''	1002.07	\mathbf{B}_1	1005.41	A''
20	1037.80	A'	1075.13	A'	999.61	A'	996.77	A'	1002.50	A_2	1106.33	A'
21	1088.28	A'	1098.15	A'	1086.55	A'	1067.83	A'	1104.90	\mathbf{B}_2	1121.61	A'
22	1146.37	A'	1163.38	A'	1094.06	A'	1077.58	A'	1138.07	A_1	1174.08	A'
23	1169.23	A'	1169.50	A'	1159.89	A'	1149.67	A'	1204.68	A_1	1248.25	A''
24	1241.75	A'	1260.46	A'	1256.62	A'	1240.35	A'	1271.77	\mathbf{B}_2	1276.04	A'
25	1306.43	A'	1287.42	A'	1314.93	A'	1307.92	A'	1333.94	\mathbf{B}_2	1318.99	A'
26	1379.71	A'	1344.05	A''	1400.13	A'	1374.15	A'	1371.93	A_1	1349.64	A''
27	1407.01	A'	1360.85	A'	1425.16	A'	1424.24	A'	1429.24	A_1	1387.72	A'
28	1495.56	A'	1389.56	A'	1498.42	A'	1454.57	A'	1501.01	B_2	1490.38	A'
29	1540.07	A'	1440.25	A'	1572.31	A'	1489.5	A'	1544.21	\mathbf{B}_2	1500.70	A'
30	1581.74	A'	1559.89	A'	1578.25	A'	1524.57	A'	1591.06	\mathbf{B}_2	1548.00	A'
31	1639.01	A'	1651.33	A'	1616.85	A'	1613.77	A'	1619.21	A_1	1628.51	A'
32	1691.94	A'	1693.12	A'	1669.72	A'	1647.13	A'	1674.01	A_1	1680.80	A'
33	3152.44	A'	3180.48	A'	3158.84	A'	3179.16	A'	3191.61	\mathbf{B}_2	3204.36	A'
34	3194.28	A'	3201.21	A'	3189.66	A'	3217.54	A'	3192.30	A_1	3204.91	A'
35	3200.83	A'	3219.28	A'	3248.6	A'	3261.33	A'	3228.38	B_2	3224.74	A'

Table S1 List of calculated (CAM-B3LYP/aug-cc-pVDZ) harmonic vibrational frequencies (cm^{-1}) and symmetries for *o*-, *m*-, and *p*-NP^a. Note that the point group is C_s for *o*- and *m*-NP in both the X and A state. For *p*-NP, the X state belongs to C_{2v}, while the A state belongs to C_s.

Observed transition (cm ⁻¹)	Assignment	Calculated transition (cm ⁻¹) ^b	Intensity
15910	1^{0}_{2}	15766	1226
15963	1_{3}^{1}	15812	1574
16003	0_{0}^{0}	15849	118900
16051	1_{1}^{1}	15895	50890
16097	1_{2}^{2}	15940	19670
16133	1_{3}^{3}	15986	6754
16175	1_{0}^{2}	16023	5178
16221	1_{1}^{3}	16068	6646
16263	1_{2}^{4}	16114	5409
16308	1_{3}^{5}	16159	3475

Table S2 Assignment of transitions in the origin region of *m*-NP^a

Observed transition (cm ⁻¹)	Assignment	Calculated transition $(cm^{-1})^b$	Intensity
16435	7^{1}_{0}	16288	33080
16479	$1^{1}_{1}7^{1}_{0}$	16334	14150
16513	9^{1}_{0}	16374	26470
16551	10^{1}_{0}	16413	74150
	$1^{1}_{1}9^{1}_{0}$	16419	11330
16597	$1^2_29^1_0$	16465	4378
	$1^1_1 10^1_0$	16458	31720
16632	$1^2_2 10^1_0$	16504	12260
	12^{1}_{0}	16503	84000
16679	$1^1_1 12^1_0$	16549	35940
	$1^3_3 10^1_0$	16549	4210
16726	$1^2_2 12^1_0$	16594	13890
16766	14^{1}_{0}	16610	38520
16802	$1^3_1 10^1_0$	16632	4141
	$1^3_3 12^1_0$	16640	4769
16824	$1^1_1 14^1_0$	16655	16480
16847	$1^2_2 14^1_0$	16701	6370
16876	$1_1^3 12_0^1$	16723	4691
16886	7_{0}^{2}	16728	4656

Table S3 Assignment of group 1 transitions in *m*-NP^a

Observed transition (cm ⁻¹)	Assignment	Calculated transition (cm ⁻¹) ^b	Intensity
16931	$7^1_0 9^1_0$	16813	6915
16976	$7^1_0 10^1_0$	16852	19990
17021	$1^1_17^1_010^1_0$	16897	8552
17061	21^{1}_{0}	16917	5478
	22^{1}_{0}	16927	9464
	$9^1_0 10^1_0$	16938	17320
	$7^1_0 12^1_0$	16943	23130
17095	$1^1_122^1_0$	16972	4049
	10_{0}^{2}	16976	23210
17108	$1^1_19^1_010^1_0$	16983	7408
	$1^3_37^1_010^1_0$	16988	9894
17140	$1_1^1 10_0^2$	17022	9929
	$9^1_0 12^1_0$	17028	18950
17178	$7^1_0 14^1_0$	17049	10720
	$10^1_0 12^1_0$	17067	50450
17190	$1_1^19_0^112_0^1$	17074	8108
17219	$1_1^17_0^114_0^1$	17095	4587
	$1^1_1 10^1_0 12^1_0 \\$	17112	21580
17233	$9^1_014^1_0$	17135	8602
17261	12_{0}^{2}	17157	26230
	$1^2_2 10^1_0 12^1_0 \\$	17158	8341
17275	$10^1_014^1_0$	17174	24060
17299	$1_1^1 12_0^2$	17203	11220
17312	$1^1_1 10^1_0 14^1_0 \\$	17219	10290
	26 ¹ ₀	17223	33340
17356	$12^{1}_{0}14^{1}_{0}$	17264	22610
	$1_1^1 26_0^1$	17269	14260

Table S4 Assignment of group 2 transitions in *m*-NP^a

17377	27 <mark>1</mark>	17273	20070
17387	28^{1}_{0}	17304	19510
	$1_1^1 12_0^1 14_0^1$	17310	9674
17397	$1^2_226^1_0$	17314	5512
	$1^{1}_{1}27^{1}_{0}$	17319	8585
17427	$1^{1}_{1}28^{1}_{0}$	17349	8345
17446	unassigned		
17475	14_{0}^{2}	17371	4743
	30 ¹ ₀	17374	4026
17489	$7^1_0 9^1_0 10^1_0$	17377	4391
17520	$7^1_0 10^2_0$	17416	6066
17569	31^{1}_{0}	17463	15050
	$7^1_0 9^1_0 12^1_0$	17468	4903
17593	$10^{1}_{0}22^{1}_{0}$	17490	6117
17604	$9^1_0 10^2_0$	17501	5680
	$7^1_0 10^1_0 12^1_0$	17506	13460
	$1^{1}_{1}31^{1}_{0}$	17508	6437
17639	10^{3}_{0}	17540	4865
17651	$1^1_17^1_010^1_012^1_0$	17552	5756
17685	$12^{1}_{0}22^{1}_{0}$	17581	5911
	$9^1_0 10^1_0 12^1_0$	17592	11960
17697	$7^1_0 12^2_0$	17597	7144
17735	$7^1_0 10^1_0 14^1_0$	17613	6493
	$10^2_0 12^1_0$	17630	15210
	$1^1_19^1_010^1_012^1_0$	17637	5114

Observed transition (cm ⁻¹)	Assignment	Calculated transition (cm ⁻¹) ^b	Intensity
17759	7 ¹ ₀ 26 ¹ ₀	17663	9061
	$1^1_1 10^2_0 12^1_0$	17676	6507
17768	$9^1_0 12^2_0$	17682	6012
17785	$9^1_0 10^1_0 14^1_0$	17699	5637
	$7^1_0 12^1_0 14^1_0$	17704	6227
17802	$7^1_0 27^1_0$	17713	5070
	$10^1_0 12^2_0$	17721	15100
17850	$10^2_014^1_0$	17737	7546
17865	$7^1_028^1_0$	17743	4755
	$9^1_026^1_0$	17748	7546
17896	$1_1^1 10_0^1 12_0^2$	17766	6461
	$10^1_026^1_0$	17787	20800
	$9^1_0 12^1_0 14^1_0$	17789	5129
17919	$9^1_027^1_0$	17798	4651
	12_{0}^{3}	17812	4716
	$10^1_0 12^1_0 14^1_0$	17828	13570
17936	$9^1_028^1_0$	17829	4179
	$1^1_1 10^1_0 26^1_0$	17832	8897
	$10^1_027^1_0$	17837	12780
17971	$10^1_028^1_0$	17867	12470
	$1_1^1 10_0^1 12_0^1 14_0^1 \\$	17873	5804
17981	$12^{1}_{0}26^{1}_{0}$	17877	23660
	$1^1_1 10^1_0 27^1_0$	17882	5465
18017	$1^1_1 10^1_0 28^1_0$	17913	5334
	$12_0^2 14_0^1$	17918	5613
	$1_1^1 12_0^1 26_0^1$	17923	10120
18025	$12^1_027^1_0$	17927	14520

 Table S5 Assignment of group 3 transitions in m-NP^a

18053	$12^{1}_{0}28^{1}_{0}$	17958	13560
18069	$1_1^1 12_0^1 27_0^1$	17973	6213
	$14^{1}_{0}26^{1}_{0}$	17984	9808
18088	$1_1^1 12_0^1 28_0^1$	18003	5798
18139	$10^1_0 31^1_0$	18026	9401
	$1_1^1 1 4_0^1 2 6_0^1$	18030	4195
18153	$14^{1}_{0}27^{1}_{0}$	18034	6358
18196	$14^{1}_{0}28^{1}_{0}$	18065	5716
18221	$12^{1}_{0}31^{1}_{0}$	18117	11700
18265	$1_1^1 1 2_0^1 3 1_0^1$	18162	5004

References

 M. Wanko, J. Houmoller, K. Stochkel, M.-B. S. Kirketerp, M. Å. Petersen, M. Brøndsted Nielsen, S. Brøndsted Nielsen and A. Rubio, *Phys. Chem. Chem. Phys.*, 2012, 14, 12905-12911.