Electronic Supplementary Information (ESI)

for

Modeling of aromatics formation in fuel-rich methane oxycombustion with an automatically generated pressuredependent mechanism

Te-Chun Chu¹, Zachary J. Buras¹, Patrick Oßwald², Mengjie Liu¹, Mark Jacob Goldman¹, William H. Green^{1,*}

¹Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States ²Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany

*Corresponding author: William H. Green, whgreen@mit.edu

Group	Name	Source of Thermochemistry	
:>č	CJ2_singlet	CsJ2_singlet-CsH	1
€ C*	CsJ2_singlet-HH	: CH ₂	1
О С* Н	CsJ2_singlet-OsH	.: нс—он	1
€ C* H	CsJ2_singlet-CH	CsJ2_singlet-CsH	1
С* Н	CsJ2_singlet-CsH	 нс—сн _з	1
С* Н	CsJ2_singlet-CtH	нс—с — сн	1
	CsJ2_singlet- (Cds-Cds-Cds-C)C	CsJ2_singlet- (Cds-Cds-Cds-Cds)Cs_ 6_ring	2
	CsJ2_singlet- (Cds-Cds-Cds-Cds)Cs_ 5_ring	H_2 CH_2 C CH_2 CH_2 CH_2	2

Table S1. Details of singlet carbene thermochemistry group corrections added to RMG

	CsJ2_singlet- (Cds-Cds-Cds-Cds)Cs_ 6_ring	H ₂ C — CH : C CH HC — CH	2
c ⇒c ==c	CdJ2_singlet-Cd	CdJ2_singlet-Cds	1
	CdJ2_singlet-(Cdd-Od)	:c==c==o	
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	CdJ2_singlet-Cds	: C CH ₂	
c=_c	CdJ2_singlet-(Cdd-Cds)	:C==CH2	1

Chemical formula	Species name (in the Chu mechanism)	Structure
CH4	Methane (CH4)	нс_н н
02	Oxygen (O2)	·öö·
СО	Carbon monoxide (CO)	⊖c≡o⊕
CO ₂	Carbon dioxide (CO2)	o=c=o
H ₂	Hydrogen (H2)	НН
C_2H_6	Ethane (C2H6)	$H_3C - CH_3$
C ₂ H ₄	Ethene (C2H4)	$H_2C \longrightarrow CH_2$
C ₂ H ₂	Acetylene (C2H2-1)	нс≡сн
CH ₂ O	Formaldehyde (CH2O)	H ₂ C=O
CH₂CO	Ethenone (C2H2O-1)	H ₂ C==C=0
C ₃ H ₃	Propargyl radicals (C3H3-1)	ĊH _{2 (Head)} ĊH _(Tail)
C ₃ H ₆	Propene (C3H6-1)	
C ₄ H ₆	1,2-Butadiene (C4H6-1)	
	1-Butyne (C4H6-2)	
	1,3-Butadiene (C4H6-5)	
	2-Butyne (C4H6-7)	
C ₄ H ₄	Vinylacetylene (C4H4-1)	
C ₄ H ₂	Diacetylene (C4H2-1)	
C ₅ H ₄	1,3-Pentadiyne (C5H4-1)	
	1,2-Pentadien-4-yne (C5H4-4)	

Table S2. The name and structure of important isomers in the Chu mechanism

C ₆ H ₆	Benzene (C6H6-17)	
C ₈ H ₆	Phenylacetylene (C8H6)	
C9H8	Indene (C9H8-3)	
	1-Propynylbenzene (C9H8-4)	
C ₁₀ H ₈	Naphthalene (C10H8-1)	
	1-Methylideneindene (C10H8-4)	
C ₁₂ H ₈	Acenaphthylene (C12H8-2)	
	2-ethynylnaphthalene (C12H8-4)	

Figure S1. Mole fraction profiles of small molecules for Case I by FFCM-1.

Figure S2. Organization of thermochemistry group corrections for singlet carbenes added to RMG database. Any unspecified ligand or valency is a wild card.

Figure S3. Comparison between predictions of Miller² and RMG, following database changes, and 1,5-hexadiyne pyrolysis experiments of Stein *et al.*³ (symbols).

Figure S4. The comparison of rate coefficient k of the reaction $CH_3+O_2 \rightarrow CH_2O+OH$ between the Chu, Chernov, Narayanaswamy mechanism.

Quantification of H₂ by the atom balance method:

The process of converting mass spectrometry signals into mole fractions has a higher uncertainty for H₂ than for the other major species quantified, and as shown below if one just uses the relatively uncertain H₂ mole fractions reported in Ref. 4 the measured number of H atoms coming out of the reactor is apparently significantly lower than the number of H atoms fed into the reactor in Cases II, IV, and V. So we developed a different method, based on atom balance, for determining the H₂ mole fractions from the experimental data.

At the highest temperature in this work (~1800 K), only major species (CH₄, O₂, CO, CO₂, H₂ and H₂O) and acetylene (C₂H₂) have non-negligible signals found in the experiments; therefore, only these species are considered in the atom balance analysis. However, since H₂O could not be directly quantified, O-atom balance is needed to evaluate the mole fraction of H₂O. Next, we use the quantified H₂O concentration to perform H-atom balance, and quantify the mole fraction of H₂. The uncertainty of H₂ is determined by the uncertainty propagation method.

O-atom balance (if no CO or CO₂ in the feed):

$$2x_{o_2,initial} = x_{CO} + 2x_{CO_2} + x_{H_2O}$$
 (at 1800 K)

H-atom balance:

$$4x_{CH_{A},initial} + 2x_{C_{2}H_{2},initial} = 4x_{CH_{A}} + 2x_{H_{2}O} + 2x_{H_{2}} + 2x_{C_{2}H_{2}}$$
 (at 1800 K)

Putting these together, the H₂ mole fraction inferred from atom balance is given by:

$$\begin{aligned} x_{H_2(@1800 K)} &= 2x_{CH_4, initial} + x_{C_2H_2, initial} - 2x_{CH_4(@1800 K)} - x_{C_2H_2(@1800 K)} + x_{CO(@1800 K)} \\ &+ x_{CO_2(@1800 K)} - 2x_{O_2, initial} \end{aligned}$$

To obtain the H₂ mole fraction profiles, the H₂ mole fractions evaluated by the direct measurement and the atom balance method at 1800 K were compared to give a Scaling Factor for H₂ for each Case. The assumption here is that during a single experimental Case the response factor for H₂ is fairly steady. However, apparently the H₂ response factor of the instrument varies a little bit (~20%) between experimental Cases; this Scaling Factor corrects for that variation in absolute response:

Scaling Factor = $(x_{H_2(@1800 K)} \text{ from atom balance equation above}) / (x_{H_2(@1800 K)} \text{ from Ref. 4})$

The results are summarized in Table S3. The atom balance method was not used in Case III because of its very large uncertainty, caused by the uncertainty propagation due to adding and subtracting large mole fractions of CO and CO_2 only known to a few significant figures.

In every case except Case III, the H_2 mole fractions reported in Ref. 4 were scaled by the Scaling Factor in Table S3. The scaled values and the error bars from Table S3 are plotted in Fig. 2 in the main article. For Case III, the experimental H_2 mole fractions and error bars shown in Fig. 2 are directly from Ref. 4 without any adjustment.

	H₂ quantified directly (Ref. 4)	H₂ quantified by atom balance	Uncertainty from atom balance	Scaling factor
Case I	3.85E-03	3.90E-03	8.7%	1.01
Case II	1.77E-03	2.21E-03	31.5%	1.25
Case III	1.18E-03	4.75E-04	290.5%	0.40
Case IV	2.61E-03	3.15E-03	10.4%	1.21
Case V	2.90E-03	3.85E-03	9.8%	1.33

Table S3. Summary of H_2 quantification in this work at 1800 K

Figure S5. Mole fraction profiles of C₂H₆, C₂H₄, C₂H₂, CH₂O, CH₂CO as a function of oven temperature for Case III and IV, measurements (symbols and uncertainty band) and predictions of three models (lines).

Figure S6. Mole fraction profiles of C₃H₆, C₃H₃, C₄H₆, C₄H₄, C₄H₂, C₅H₄ as a function of oven temperature for Case III and V, measurements (symbols and uncertainty band) and predictions of three models (lines).

Figure S7. Mole fraction profiles of C_6H_6 , C_8H_6 , C_9H_8 , $C_{10}H_8$, $C_{12}H_8$ as a function of oven temperature for Case III and V, measurements (symbols and uncertainty band) and predictions of three models (lines).

Figure S8. Mole fraction profiles of CH₂O and CH₂CO as a function of oven temperature for Case I, II and IV, measurements (symbols and uncertainty band) and predictions of three models (lines).

Figure S9. Mole fraction profiles of C_3H_6 and C_5H_4 as a function of oven temperature for Case I, II and IV, measurements (symbols and uncertainty band) and predictions of three models (lines).

Figure S10. The fragmentation ratio of Signal(C_3H_3)/Signals(C_3H_4) for propyne and allene at various ionization energies.

The contribution of m/z = 39 fragments is Atconsidered as follows (at 16 eV):

S(FC3H3) = S(C3H4)*f

S(C3H4) = S(Ar)/x(Ar) * x(C3H4) * k(C3H4, new)

x(FC3H3) = S(FC3H3) * x(Ar)/S(Ar)* 1/k(C3H3, old)

where

S(i): signal of species i, C3H3 = propargyl radicals, C3H4 = propyne or allene, Ar = argon

FC3H3: fragment contribution to the C3H3 signal

f: fragmentation factor (from Figure S10; mean 0.134 for propyne and 0.085 for allene)

x(FC3H3): mole fraction contribution based on C₃H₃ Fragments

k(i): calibration factors (C₃H₃ as used in the original calculation = 3169; C₃H₄ from the new measurements

=> 1243 for propyne and 1450 for allene)

To combine the equations, we get the following equations:

x(FC3H3) = f*k(C3H4)/k(C3H3) * x(C3H4) x(FC3H3) = **0.053** * x(propyne) x(FC3H3) = **0.039** * x(allene)

To validate the effect of fragmentation on the mole fraction profiles, 5.3% of propyne concentration and 3.9% of allene concentration were added to C_3H_3 concentration in the Chu model.

Other supporting information:

- 1. The full RMG input deck and the RMG version
- 2. The full mechanism
- 3. The species dictionary in adjacency list format
- 4. New experimental quantified in this work

References:

- 1. C. F. Goldsmith, G. R. Magoon and W. H. Green, *J. Phys. Chem. A*, 2012, **116**, 9033-9057.
- 2. J. A. Miller and S. J. Klippenstein, *The Journal of Physical Chemistry A*, 2003, **107**, 7783-7799.
- 3. S. E. Stein, J. A. Walker, M. M. Suryan and A. Fahr, *Symposium (International) on Combustion*, 1991, **23**, 85-90.
- 4. M. Köhler, P. Oßwald, H. Xu, T. Kathrotia, C. Hasse and U. Riedel, *Chemical Engineering Science*, 2016, **139**, 249-260.