Supporting Information

Adsorption and Oxidation of Propane and Cyclopropane on IrO₂(110)

Rachel Martin,^{1,†} Minkyu Kim,^{2,†} Austin Franklin,¹ Yingxue Bian,¹ Aravind Asthagiri²

and Jason F. Weaver¹

¹Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA

²William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA

[†]Rachel Martin and Minkyu Kim contributed equally to this work.

Tel. 352-392-0869, Fax. 352-392-9513

^{*}To whom correspondence should be addressed, weaver@che.ufl.edu

Structure of the s-IrO₂(110) layer on Ir(100)

Bulk crystalline IrO₂ has a tetragonal unit cell with Ir atoms surrounded by an octahedral arrangement of six oxygen atoms and each oxygen atom is coordinated with three Ir atoms resulting in a trigonal plane. Figure S1 shows a top and side view of the stoichiometrically-terminated IrO₂(110) surface. The IrO₂(110) surface unit cell is rectangular with dimensions of a = 3.16 Å and b = 6.36 Å, where a and b are parallel to the [001] and [$\overline{1}10$] directions of the IrO₂ crystal, respectively. The unit cell dimensions may also be expressed as a a = 1.16x and b = 2.34x, where x = 2.72 Å is the lattice constant of Ir(100). The IrO₂(110) surface consists of alternating rows of O_{br} and Ir_{cus} that align along the [001] direction. Each of these surface species has one dangling bond due to a decrease in coordination in comparison to bulk IrO₂. H and O atoms adsorbed on top of the Ir_{cus} row are referred to as H_{ot} or O_{ot}, respectively.

Figure S1. Model representation of top and side view of stoichiometric $IrO_2(110)$ structure. The red and blue atoms represent O and Ir atoms, respectively. Rows of Ir_{cus} , Ir_{6f} , O_{br} , O_{3f} along the [001] crystallographic direction are indicated. The unit cell dimensions *a* and *b* are parallel to the [001] and $[1\overline{10}]$ directions of the IrO_2 crystal.

Measurement of product yields

We estimate atomic oxygen coverages by scaling integrated O₂ TPD spectra with those obtained from a saturated (2 × 1)-O layer containing 0.50 ML of O-atoms and prepared by exposing the Ir(100)-(5 × 1) surface to O₂ in UHV.¹ To estimate hydrogen coverages, we scaled integrated hydrogen desorption spectra by an integrated TPD spectrum collected from a saturated Ir(100)-(5 × 1)-H layer containing 0.80 ML of atomic hydrogen that we prepared by adsorbing hydrogen to saturation on the Ir(100)-(5 × 1) surface at 300 K.² We performed TPRS experiments of CO oxidation on saturated O-covered Ir(100) to estimate the CO₂ desorption yields. Specifically, we collected O₂ and CO₂ TPRS spectra after exposing a (2 × 1)-O layer to a sub-saturation dose of CO and assuming that the CO₂ yield is equal to the difference between the initial (0.50 ML) and final coverages of oxygen as determined from the O₂ TPRS yield. To estimate CO desorption yields, we scaled integrated CO desorption spectra by an integrated TPD spectrum collected from a saturated c(2 × 2) layer containing 0.50 ML of CO that we prepare by adsorbing CO to saturation on Ir(100)-(1 × 1) at 300 K.^{1, 3.4}

We performed TPRS experiments of hydrogen oxidation on partially O-covered Ir(100) to estimate the water desorption yields. In these experiments, we first collected O_2 and CO_2 TPRS spectra after exposing a (2 × 1)-O layer to a sub-saturation dose of CO and assuming that the oxygen remaining on Ir(100) is equal to the difference between the initial oxygen coverage in the (2 × 1)-O layer (0.50 ML) and the CO₂ yield determined from the CO₂ TPRS spectrum. We then collected O_2 and H_2O TPRS spectra after exposing the partially O-covered Ir(100) surface generated from the first step to a saturation dose of hydrogen and assuming that the water yield is equal to the difference between the initial and finial coverage of oxygen determined from the O_2 TPRS yield. We repeat these calibration TPRS experiments to ensure accuracy in our estimates of desorption yields. We estimated C_3H_8 and $c-C_3H_6$ coverages by scaling the intensity-to-yield conversion factors determined for O_2 with relative sensitivity factors (RSF) estimated for the mass spectrometric detection of these gases. We used a reported RSF value to compute the C_3H_8 desorption yield,⁵ and estimated the RSF for $c-C_3H_6$ by scaling the C_3H_8 RSF with the ratio of electron-impact ionization cross sections for $c-C_3H_6$ and C_3H_8 (~0.81) reported in the literature.⁶

TPRS spectra as a function of the C_3H_8 coverage on $IrO_2(110)$

Figure S2 shows H₂O, CO, C₃H₈ and CO₂ TPRS spectra obtained as a function of the initial C₃H₈ coverage generated on IrO₂(110)/Ir(100) at 90 K. We represent the H2O and C3H8 TPRS spectra using the measured intensities of the m/z = 18 and 29 fragments, respectively, and represent the CO and CO₂ TPRS spectra with the measured intensities of the m/z = 28 and 44 fragments after removing the low-temperature features generated by C_3H_8 fragmentation in the ionizer. We discontinued each TPRS experiment at 650 K before the H₂O TPRS feature returned to the baseline. As described in the main manuscript, limiting the final temperature to 650 K allows us to subsequently regenerate the $IrO_2(110)$ surface by O_2 treatment in UHV and thus collect TPRS data efficiently using the same oxide film. The data shows that a C₃H₈ TPD peak at ~205 K, attributed to desorption of an adsorbed C_3H_8 σ -complex, first appears after adsorbing just over 0.20 ML of propane, and the CO_x products yields begin to plateau. At a total C₃H₈ coverage of 0.31 ML, the propane TPD spectra exhibit a saturated peak at 205 K and a new peak at ~150 K that we attribute to C₃H₈ associated with O_{br} atoms of the surface. This latter peak appears to downshift to ~140 K and intensify significantly at higher propane coverage, while the peak at 205 K remains saturated.

TPRS spectra as a function of the c-C₃H₆ coverage on IrO₂(110)

Figure S3 shows H₂O, CO, c-C₃H₆ and CO₂ TPRS spectra obtained as a function of the initial C₃H₈ coverage generated on IrO₂(110)/Ir(100) at 90 K. We represent the H₂O and c-C₃H₆ TPRS spectra using the measured intensities of the m/z = 18 and 42 fragments, respectively, and represent the CO and CO₂ TPRS spectra with the measured intensities of the m/z = 28 and 44 fragments after removing the low-temperature features generated by c-C₃H₆ fragmentation in the ionizer. We discontinued each TPRS experiment at 650 K before the H₂O TPRS feature returned to the baseline. The c-C₃H₆ TPD spectra first exhibit a peak near 145 K at a total c-C₃H₆ coverage of 0.44 ML, with this peak intensifying and slightly downshifting with increasing c-C₃H₆ that is associated with O_{br} atoms, and conclude that c-C₃H₆ σ -complexes form in high coverages on IrO₂(110) but that they all the complexes oxidize and thus do not generate a distinct c-C₃H₆ TPD peak.

Figure S3. TPRS spectra obtained after adsorbing $c-C_3H_6$ on $IrO_2(110)/Ir(100)$ at 90 K to generate coverages of 0.06, 0.07, 0.12, 0.19, 0.27, 0.34, 0.44, 0.62 and 0.70 ML. TPRS traces are shown for a) H_2O , b) CO, c) $c-C_3H_6$ and d) CO₂.

Configurations of C₃H₈ σ-complexes on IrO₂(110) predicted by DFT-D3

Figure S4 shows the four configurations of $C_3H_8 \sigma$ -complexes on IrO₂(110) identified with DFT-D3. DFT-D3 predicts that the p-2 η^1 complex is the favored adsorbed configuration of C_3H_8 on IrO₂(110) surface.

Configurations of c-C₃H₆ σ-complexes on IrO₂(110) predicted by DFT-D3

Figure S5 shows the four configurations of $c-C_3H_6 \sigma$ -complexes on IrO₂(110) identified with DFT-D3. DFT-D3 predicts that the $2\eta^1$ complex is the favored adsorbed configuration of $c-C_3H_6$ on IrO₂(110) surface.

Pathways for dehydrogenation of the bidentate C₃H₆ intermediate on IrO₂(110)

Figure S6 compares pathways computed for cleavage of a C-H bond from the different CH_x groups of the $C_3H_7(ad)$ species, and also lists the thermochemical barriers for subsequent $C_3H_6(g)$ generation. Our calculations predict that C-H bond cleavage of the CH₃ group of C₃H₇(ad), affording the CH₂CH₂CH₂(ad) species, is kinetically and thermodynamically preferred over C-H bond cleavage of the CH₂ groups. Cleavage of a C-H bond of the interior CH₂ group to generate an adsorbed propylene species (CH₃CHCH₂) is kinetically and thermodynamically disfavored relative to the other C₃H₇(ad) dehydrogenation reactions (Figure 8b, blue). Cleavage of a C-H bond of the terminal CH₂ group to produce adsorbed CH₃CH₂CH(ad) has a barrier of only 48 kJ/mol (Figure 8b, black), and could be kinetically competitive with C₃H₇(ad) dehydrogenation to $CH_2CH_2CH_2(ad)$ for which the barrier is 41 kJ/mol. The resulting $CH_3CH_2CH(ad)$ species would preferentially dehydrogenate if O_{br} atoms are available. Interestingly, conversion of the CH₃CH₂CH(ad) species to gaseous propylene has a minimum barrier that is lower than the barriers for O_{br} regeneration (160 vs. 220-260 kJ/mol), suggesting the possibility of propylene formation at high HO_{br} coverages. However, C₃H₇(ad) dehydrogenation to CH₃CH₂CH(ad) has a small exothermicity of 22 kJ/mol, and thus a barrier of only 70 kJ/mol is required for H-transfer to $CH_3CH_2CH(ad)$ to regenerate $C_3H_7(ad)$ (Figure 8b, black). In contrast, a much larger barrier (127) kJ/mol) must be overcome for the $CH_2CH_2CH_2(ad)$ species to be hydrogenated to $C_3H_7(ad)$. The net effect is that the $CH_2CH_2CH_2(ad)$ species will be the dominant product of $C_3H_7(ad)$ dehydrogenation on $IrO_2(110)$, and its formation ultimately results in extensive oxidation to CO_x as O_{br} atoms are regenerated.

1. Anic, K.; Bulchtiyarov, A. V.; Li, H.; Rameshan, C.; Rupprechter, G., "CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study". *J. Phys. Chem. C* **2016**, *120*, 10838-10848.

2. Arman, M. A.; Klein, A.; Ferstl, P.; Valookaran, A.; Gustafson, J.; Schulte, K.; Lundgren, E.; Heinz, K.; Schneider, A.; Mittendorfer, F.; Hanuner, L.; Knudsen, J., "Adsorption of hydrogen on stable and metastable Ir(100) surfaces". *Surf. Sci.* **2017**, *656*, 66-76.

3. Kisters, G.; Chen, J. G.; Lehwald, S.; Ibach, H., "Adsorption of Co on the Unreconstructed and Reconstructed Ir(100) Surface". *Surf. Sci.* **1991**, *245*, 65-71.

4. Lerotholi, T. J.; Held, G.; King, D. A., "Phase mixing and phase separation accompanying the catalytic oxidation of CO on Ir{100}". *Surf. Sci.* **2007**, *601*, 1285-1295.

5. Relative Sensitivity: RS measurements of gases *Application Note* 282, https://www.hiden.de/wp-content/uploads/pdf/RS_Measurement_of_Gases_-_Hiden_Analytical_App_Note_282.pdf.

6. Nishimura, H.; Tawara, H., "Total Electron-Impact Ionization Cross-Sections for Simple Hydrocarbon Molecules". *Journal of Physics B-Atomic Molecular and Optical Physics* **1994**, *27*, 2063-2074.