Supplementary Information: Hydrogen adsorption trends on Al-doped Ni₂P surfaces for optimal catalyst design

Lauri Partanen, Mikko Hakala, and Kari Laasonen*

Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland

E-mail: kari.laasonen@aalto.fi

1 H-adsorption energies for Ni_3P_2 termination of Ni_2P

Optimised hydrogen adsorption energies for the first (green triangle) and second (purple square) hydrogens at the 14 investigated hydrogen starting positions (H identifier) on top of the Ni₃P₂ terminated Ni₂P slab. The dashed black line indicates the $\Delta G_{\rm H}$ of the first hydrogen adsorption for the pristine slab, whereas the dashed red line shows the second hydrogen adsorption $\Delta G_{\rm H}$ value for the pristine slab. As described in the article, the deep yellow band highlights the ±0.1 eV region around the optimal $\Delta G_{\rm H} = 0$ value. For example, in Figure S1, the green triangle at H identifier 13 corresponds to the black triangle at M (11d1) in Figure 5 of the main article. Similarly, the purple square at H identifier 1 corresponds to the green square at Mg (11d1) in the same Figure.

1.1 Dopants on a single layer

Figure S2: Mg (l2d1)

Figure S4: V (l2d1)

Figure S6: V (l3d1)

Figure S8: Fe (l2d2)

Figure S10: Fe (l3d2)

Figure S12: Co (l2d1)

Figure S14: Cu (l1d1)

Figure S16: Mo (l2d1)

1.2 Dopants on two layers

Figure S18: Co (l1l2)

Figure S20: Mg (l2l4)

Figure S22: Cu (l1l3)

2 H-adsorption energies for Ni_3P_2+P termination of Ni_2P

Optimised hydrogen adsorption energies for the first (green triangle), second (purple square), and third (red circle) hydrogens at the 14 investigated hydrogen starting positions on top of the Ni₃P₂+P terminated Ni₂P slab. The dashed black line indicates the $\Delta G_{\rm H}$ of the first hydrogen adsorption for the pristine slab, whereas the dashed red line shows the second hydrogen adsorption $\Delta G_{\rm H}$ value for the pristine slab. As described in the article, the deep yellow band highlights the ±0.1 eV region around the optimal $\Delta G_{\rm H} = 0$ value. For example, in Figure S23, the green triangle at H identifier 2 corresponds to the black triangle at Mg (11d1) in Figure 7 of the main article. Similarly, the purple square at H identifier 12 corresponds to the green square at Mg (11d1) in the same Figure.

2.1 Dopants on a single layer

Figure S23: Mg (l1d1)

Figure S27: V (l2d1)

Figure S29: V (l4d1)

Figure S31: Fe (l1d2)

Figure S33: Fe (l3d2)

S19

Figure S39: Mo (l2d1)

Figure S41: Mo (l3d3)

2.2 Dopants on two layers

19410 5 12: 00 (1112