Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

## **Supporting information**

## A Comparative Study of Nitrobenzene Reduction using model catalysts

Shuchang Wu,\*<sup>a</sup> Yangming Lin,<sup>b</sup> Bingwei Zhong,<sup>c</sup> Guodong Wen,<sup>b</sup> Hongyang Liu \*<sup>b</sup> and Dang Sheng Su \*<sup>b</sup>

[a] Dr. S. C. Wu

School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou

318000, Zhejiang Province, China

[b] Dr. Y. M. Lin, Prof. G. D. Wen, Prof. H. Y. Liu, Prof. D. S. Su

Shenyang National Laboratory for Materials Science

Institute of Metal Research, Chinese Academy of Sciences

72 Wenhua Road, Shenyang, 110016, China

[c] Dr. B. W. Zhong

JiYang College of Zhejiang A&F University, 77 Puyang Road, Zhuji, 311800, China

\* Corresponding author. E-mail: <a href="mailto:scwu10b@alum.imr.ac.cn">scwu10b@alum.imr.ac.cn</a>

liuhy@imr.ac.cn; dssu@imr.ac.cn

## Experimental

*Materials*: Phenanthraquinone (99%), phthalide (98%) and nitrobenzene (99%) were purchased from Alfa Aesar. 9, 10-anthraquinone (98%), benzyl benzoate (GR) and benzyl ether (97%) were bought from Aladdin Reagent Co. Ltd., Shanghai, China. Hydrazine monohydrate (85%), terephthalic acid (99%), ethanol (AR) and other solvents (AR) were supplied by China Medicine Group Shanghai Chemical Reagent Company.

*Catalytic reactions*: Typically, a certain amount of catalyst, 1.2 g of nitrobenzene, 6.0 equivalent of hydrazine monohydrate and 2 mL of ethanol were charged into a 25 mL round-bottom flask. The flask was then immersed in an oil bath and heated under a water-cooled condenser and kept for a period of time. The reaction temperature here was the temperature of the oil bath. When the reaction was finished, methanol/water (volume ratio 75:25) was added and the mixture was diluted exactly to 50 mL in a volumetric flask. The products were analyzed by HPLC (Elite, UV detector, mobile phase: 75/25 (v/v) methanol/water) with SinoChrom ODS-BP column.



Figure S1. Structure of the catalyst and each additive



Figure S2. PQ and AQ catalyzed reduction of nitrobenzene at 90 °C Reaction condition: 30 mg of catalyst, 1.2 g of nitrobenzene, 6.0 equivalent of hydrazine hydrate, 2 mL of ethanol, 90°C.

| Solvent          | Conv. (%) | Sel. (aniline, %) | Y. (aniline, %) |  |
|------------------|-----------|-------------------|-----------------|--|
| Ethanol          | 93.4      | 42.1              | 39.3            |  |
| Methanol         | 86.6      | 43.4              | 37.6            |  |
| Water            | 70.1      | 61.9              | 43.4            |  |
| THF              | 32.2      | 24.5              | 7.9             |  |
| Chloroform       | 10.2      | 12.0              | 1.2             |  |
| Acetone          | 60.4      | 42.7              | 25.8            |  |
| Acetonitrile     | 82.2      | 36.9              | 30.3            |  |
| Dioxane          | 79.6      | 40.8              | 32.5            |  |
| Benzotrifluoride | 69.3      | 53.1              | 36.8            |  |

Table S1. Reduction of nitrobenzene in different solvents

Reaction condition: 15 mg of phenanthraquinone, 1.2 g of nitrobenzene, 6.0 equivalent of hydrazine hydrate, 2 mL of solvent, 100°C, 3 h.

| Solvent          | Conv. (%)   | Sel (aniline %) | V (aniline %) |
|------------------|-------------|-----------------|---------------|
|                  | COIIV. (70) |                 | 1. (amme, 70) |
| Ethanol          | 80.4        | 75.1            | 60.4          |
| Methanol         | 75.2        | 76.8            | 57.8          |
| Water            | 58.1        | 89.9            | 52.2          |
| THF              | 26.7        | 51.3            | 13.7          |
| Chloroform       | 9.6         | 14.4            | 1.4           |
| Acetone          | 54.1        | 76.5            | 41.4          |
| Acetonitrile     | 73.7        | 67.1            | 49.4          |
| Dioxane          | 71.8        | 70.7            | 50.8          |
| Benzotrifluoride | 60.5        | 83.3            | 50.4          |

Table S2. Reduction of nitrobenzene in different solvents

Reaction condition: 5 mg of phenanthraquinone, 1.2 g of nitrobenzene, 6.0 equivalent of hydrazine hydrate, 2 mL of solvent, 100°C, 3 h.