ELECTRONIC SUPPLEMENTARY INFORMATION

Uncovering the role of the stationary points in the dynamics of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction

Balázs Olasz and Gábor Czakó*

Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary

* Email: gczako@chem.u-szeged.hu

DEFINITION OF THE INTERACTION REGION

The interaction region, where the geometries are assigned to one of the stationary points, is defined by excluding the configurations of the reactant and product channels given below.

Reactant channel

IF $r_{\mathrm{C}-\mathrm{I}}<3.2 \AA$ AND $r_{\mathrm{Cl}-\mathrm{F}}>5.0 \AA \mathrm{AND}$ all $r_{\mathrm{C}-\mathrm{H}}<2.0 \AA$, where $r_{\text {Cl-F }}$ is the distance of the middle of the C-I bond to the F atom

$\mathbf{S}_{\mathbf{N}} \mathbf{2}$ product channel

IF $r_{\mathrm{C}-\mathrm{I}}>3.2 \AA$ AND $r_{\mathrm{C}-\mathrm{F}}<2.2 \AA \mathrm{AND} r_{\mathrm{CF}-\mathrm{I}}>5.0 \AA$ AND all $r_{\mathrm{C}-\mathrm{H}}<2.0 \AA$, where $r_{\text {CF-I }}$ is the distance of the middle of the C-F bond to the I atom

Proton-abstraction product channel

IF $r_{\mathrm{C}-\mathrm{I}}<3.2 \AA$ AND $r_{\mathrm{C}-\mathrm{F}}>2.2 \AA$ AND one $r_{\mathrm{F}-\mathrm{H}}<2.0 \AA$ AND $r_{\mathrm{Cl}-\mathrm{HF}}>5.0 \AA$, where $r_{\mathrm{CI}-\mathrm{HF}}$ is the distance of the middle of the C-I bond to the middle of the $\mathrm{H}-\mathrm{F}$ bond

IF ${ }^{-}$product channel

IF $r_{\mathrm{C}-\mathrm{I}}>3.2 \AA$ AND $r_{\mathrm{C}-\mathrm{F}}>2.2 \AA$ AND $r_{\mathrm{F}-\mathrm{I}}<3.0 \AA$ AND $r_{\mathrm{FI}-\mathrm{C}}>5.0 \AA$ AND all $r_{\mathrm{C}-\mathrm{H}}<2.0 \AA$, where $r_{\mathrm{FI}-\mathrm{C}}$ is the distance of the middle of the F-I bond to the C atom

IHF $^{-}$product channel

IF $r_{\mathrm{C}-\mathrm{I}}>3.2 \AA$ AND $r_{\mathrm{C}-\mathrm{F}}>2.2 \AA$ AND one $r_{\mathrm{C}-\mathrm{H}}>2.0 \AA$ AND $r_{\mathrm{FI}-\mathrm{C}}>5.0 \AA$ AND $r_{\mathrm{F}-\mathrm{H}}<1.7 \AA$ AND $r_{\text {I-H }}<2.8 \AA$

$\mathrm{F}^{-}+\mathbf{C H}_{\mathbf{3}}+\mathrm{I}$ product channel

IF $r_{\mathrm{C}-\mathrm{I}}>5.0 \AA$ AND $r_{\mathrm{C}-\mathrm{F}}>5.0 \AA$ AND $r_{\mathrm{F}-\mathrm{I}}>3.0 \AA$ AND all $r_{\mathrm{C}-\mathrm{H}}<2.0 \AA$

$\mathbf{C H}_{\mathbf{2}}+\mathbf{H F}+\mathrm{I}^{-}$product channel

IF $r_{\mathrm{C}-\mathrm{I}}>5.0 \AA$ AND $r_{\mathrm{HF}-\mathrm{C}}>5.0 \AA$ AND one $r_{\mathrm{C}-\mathrm{H}}>2.0 \AA$ AND $r_{\mathrm{F}-\mathrm{H}}<2.0 \AA$, where $r_{\mathrm{HF}-\mathrm{C}}$ is the distance of the middle of the $\mathrm{H}-\mathrm{F}$ bond to the C atom

Hydrogen-departure product channel

IF not proton-abstraction or not IHF^{-}or not $\mathrm{CH}_{2}+\mathrm{HF}+\mathrm{I}^{-}$channel AND there is at least one H atom at $\geq 5 \AA$ distance from the C atom

Figure S1 continues

Figure S1. Stationary-point distributions, normalized for each channel, corresponding to $b=0$ and b averaged $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ trajectories at collision energies of $1.0,4.0,7.4,10.0,15.9,35.3$, and 50.0 kcal/mol.

Figure S2. Stationary-point-specific distributions of the positions of F^{-}in the entrance channel of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction obtained by trajectory orthogonal projection onto the I-C-H plane at different collision energies.

Figure S3. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $1.0 \mathrm{kcal} / \mathrm{mol}$.

Figure S4. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $4.0 \mathrm{kcal} / \mathrm{mol}$.

Figure S5. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $7.4 \mathrm{kcal} / \mathrm{mol}$.

Figure S6. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $10.0 \mathrm{kcal} / \mathrm{mol}$.

Figure S7. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $15.9 \mathrm{kcal} / \mathrm{mol}$.

Figure S8. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $35.3 \mathrm{kcal} / \mathrm{mol}$.

Figure S9. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $50.0 \mathrm{kcal} / \mathrm{mol}$.

Figure S10. Transition probability matrices for the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $1.0 \mathrm{kcal} / \mathrm{mol}$. Darker matrix elements mean higher probabilities for row \rightarrow column transitions between stationary points.

Figure S11. Transition probability matrices for the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $4.0 \mathrm{kcal} / \mathrm{mol}$. Darker matrix elements mean higher probabilities for row \rightarrow column transitions between stationary points.

Figure S12. Transition probability matrices for the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $7.4 \mathrm{kcal} / \mathrm{mol}$. Darker matrix elements mean higher probabilities for row \rightarrow column transitions between stationary points.

Figure S13. Transition probability matrices for the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $10.0 \mathrm{kcal} / \mathrm{mol}$. Darker matrix elements mean higher probabilities for row \rightarrow column transitions between stationary points.

Figure S14. Transition probability matrices for the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $15.9 \mathrm{kcal} / \mathrm{mol}$. Darker matrix elements mean higher probabilities for row \rightarrow column transitions between stationary points.

Figure S15. Transition probability matrices for the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $35.3 \mathrm{kcal} / \mathrm{mol}$. Darker matrix elements mean higher probabilities for row \rightarrow column transitions between stationary points.

Figure S16. Transition probability matrices for the stationary points of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $50.0 \mathrm{kcal} / \mathrm{mol}$. Darker matrix elements mean higher probabilities for row \rightarrow column transitions between stationary points.

$\mathrm{S}_{\mathrm{N}} 2$ inversion

Figure S17. Assigned stationary points as a function of integration time for selected trajectories of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at $b=0$ and collision energy of $35.3 \mathrm{kcal} / \mathrm{mol}$. (All the three $\mathrm{S}_{\mathrm{N}} 2$ retention trajectories proceed with double inversion.)

Figure S18. Distance-constrained stationary-point distributions, normalized for each channel, corresponding to $b=0 \mathrm{~F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ trajectories at collision energies of 1.0, 4.0, 7.4, 10.0, 15.9, 35.3, and $50.0 \mathrm{kcal} / \mathrm{mol}$.

Figure S19. Energy-constrained stationary-point distributions, normalized for each channel, corresponding to $b=0 \mathrm{~F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ trajectories at collision energies of $1.0,4.0,7.4,10.0,15.9,35.3$, and $50.0 \mathrm{kcal} / \mathrm{mol}$.

