# **ELECTRONIC SUPPLEMENTARY INFORMATION**

## Uncovering the role of the stationary points in the dynamics of the

## $F^- + CH_3I$ reaction

## Balázs Olasz and Gábor Czakó\*

Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary

\* Email: gczako@chem.u-szeged.hu

#### **DEFINITION OF THE INTERACTION REGION**

The interaction region, where the geometries are assigned to one of the stationary points, is defined by excluding the configurations of the reactant and product channels given below.

#### **Reactant channel**

IF  $r_{\text{C-I}} < 3.2$  Å AND  $r_{\text{CI-F}} > 5.0$  Å AND all  $r_{\text{C-H}} < 2.0$  Å,

where  $r_{\text{CI-F}}$  is the distance of the middle of the C-I bond to the F atom

#### S<sub>N</sub>2 product channel

IF  $r_{\text{C-I}} > 3.2$  Å AND  $r_{\text{C-F}} < 2.2$  Å AND  $r_{\text{CF-I}} > 5.0$  Å AND all  $r_{\text{C-H}} < 2.0$  Å, where  $r_{\text{CF-I}}$  is the distance of the middle of the C-F bond to the I atom

#### **Proton-abstraction product channel**

IF  $r_{\text{C-I}} < 3.2$  Å AND  $r_{\text{C-F}} > 2.2$  Å AND one  $r_{\text{F-H}} < 2.0$  Å AND  $r_{\text{CI-HF}} > 5.0$  Å, where  $r_{\text{CI-HF}}$  is the distance of the middle of the C-I bond to the middle of the H-F bond

#### IF<sup>-</sup> product channel

IF  $r_{\text{C-I}} > 3.2$  Å AND  $r_{\text{C-F}} > 2.2$  Å AND  $r_{\text{F-I}} < 3.0$  Å AND  $r_{\text{FI-C}} > 5.0$  Å AND all  $r_{\text{C-H}} < 2.0$  Å, where  $r_{\text{FI-C}}$  is the distance of the middle of the F-I bond to the C atom

## IHF<sup>-</sup> product channel

IF  $r_{C-I} > 3.2$  Å AND  $r_{C-F} > 2.2$  Å AND one  $r_{C-H} > 2.0$  Å AND  $r_{F-C} > 5.0$  Å AND  $r_{F-H} < 1.7$  Å AND  $r_{I-H} < 2.8$  Å

#### **F**<sup>-</sup> + **CH**<sub>3</sub> + **I** product channel

IF  $r_{C-I} > 5.0$  Å AND  $r_{C-F} > 5.0$  Å AND  $r_{F-I} > 3.0$  Å AND all  $r_{C-H} < 2.0$  Å

## $CH_2 + HF + I^-$ product channel

IF  $r_{\text{C-I}} > 5.0$  Å AND  $r_{\text{HF-C}} > 5.0$  Å AND one  $r_{\text{C-H}} > 2.0$  Å AND  $r_{\text{F-H}} < 2.0$  Å, where  $r_{\text{HF-C}}$  is the distance of the middle of the H-F bond to the C atom

## Hydrogen-departure product channel

IF not proton-abstraction or not IHF<sup>-</sup> or not  $CH_2 + HF + \Gamma$  channel AND there is at least one H atom at  $\geq$ 5 Å distance from the C atom



Figure S1 continues on the next page

Figure S1 continues



**Figure S1.** Stationary-point distributions, normalized for each channel, corresponding to b = 0 and b-averaged  $F^- + CH_3I$  trajectories at collision energies of 1.0, 4.0, 7.4, 10.0, 15.9, 35.3, and 50.0 kcal/mol.



**Figure S2.** Stationary-point-specific distributions of the positions of  $F^-$  in the entrance channel of the  $F^- + CH_3I$  reaction obtained by trajectory orthogonal projection onto the I-C-H plane at different collision energies.



Figure S3. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the  $F^- + CH_3I$  reaction at b = 0 and collision energy of 1.0 kcal/mol.



Figure S4. Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the  $F^- + CH_3I$  reaction at b = 0 and collision energy of 4.0 kcal/mol.



**Figure S5.** Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 7.4 kcal/mol.



**Figure S6.** Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 10.0 kcal/mol.



**Figure S7.** Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 15.9 kcal/mol.



**Figure S8.** Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 35.3 kcal/mol.



**Figure S9.** Distributions of the root-mean-square deviations of the actual geometries relative to the assigned and all the stationary points of the  $F^- + CH_3I$  reaction at b = 0 and collision energy of 50.0 kcal/mol.



**Figure S10.** Transition probability matrices for the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 1.0 kcal/mol. Darker matrix elements mean higher probabilities for row  $\rightarrow$  column transitions between stationary points.



**Figure S11.** Transition probability matrices for the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 4.0 kcal/mol. Darker matrix elements mean higher probabilities for row  $\rightarrow$  column transitions between stationary points.



**Figure S12.** Transition probability matrices for the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 7.4 kcal/mol. Darker matrix elements mean higher probabilities for row  $\rightarrow$  column transitions between stationary points.



**Figure S13.** Transition probability matrices for the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 10.0 kcal/mol. Darker matrix elements mean higher probabilities for row  $\rightarrow$  column transitions between stationary points.



**Figure S14.** Transition probability matrices for the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 15.9 kcal/mol. Darker matrix elements mean higher probabilities for row  $\rightarrow$  column transitions between stationary points.



**Figure S15.** Transition probability matrices for the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 35.3 kcal/mol. Darker matrix elements mean higher probabilities for row  $\rightarrow$  column transitions between stationary points.



**Figure S16.** Transition probability matrices for the stationary points of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 50.0 kcal/mol. Darker matrix elements mean higher probabilities for row  $\rightarrow$  column transitions between stationary points.



**Figure S17.** Assigned stationary points as a function of integration time for selected trajectories of the  $F^-$  + CH<sub>3</sub>I reaction at b = 0 and collision energy of 35.3 kcal/mol. (All the three S<sub>N</sub>2 retention trajectories proceed with double inversion.)



**Figure S18.** Distance-constrained stationary-point distributions, normalized for each channel, corresponding to b = 0 F<sup>-</sup> + CH<sub>3</sub>I trajectories at collision energies of 1.0, 4.0, 7.4, 10.0, 15.9, 35.3, and 50.0 kcal/mol.



**Figure S19.** Energy-constrained stationary-point distributions, normalized for each channel, corresponding to b = 0 F<sup>-</sup> + CH<sub>3</sub>I trajectories at collision energies of 1.0, 4.0, 7.4, 10.0, 15.9, 35.3, and 50.0 kcal/mol.